
xscen Documentation
Release 0.7.25-beta

Gabriel Rondeau-Genesse

Jan 16, 2024





CONTENTS:

1 Need help? 3

2 Features 5
2.1 xscen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Good to know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Workflow templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.10 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.11 xscen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Python Module Index 173

Index 175

i



ii



xscen Documentation, Release 0.7.25-beta

xscen: A climate change scenario-building analysis framework, built with Intake-esm catalogs and xarray-based pack-
ages such as xclim and xESMF.

CONTENTS: 1



xscen Documentation, Release 0.7.25-beta

2 CONTENTS:



CHAPTER

ONE

NEED HELP?

• Ouranos employees can ask questions on the Ouranos private StackOverflow where you can tag subjects and
people. (https://stackoverflow.com/c/ouranos/questions ).

• Potential bugs in xscen can be reported as an issue here: https://github.com/Ouranosinc/xscen/issues .

• Problems with data on Ouranos’ servers can be reported as an issue here: https://github.com/Ouranosinc/
miranda/issues

• To be aware of changes in xscen, you can “watch” the github repo. You can customize the watch function to
notify you of new releases. (https://github.com/Ouranosinc/xscen )

3

https://stackoverflow.com/c/ouranos/questions
https://github.com/Ouranosinc/xscen/issues
https://github.com/Ouranosinc/miranda/issues
https://github.com/Ouranosinc/miranda/issues
https://github.com/Ouranosinc/xscen


xscen Documentation, Release 0.7.25-beta

4 Chapter 1. Need help?



CHAPTER

TWO

FEATURES

• Supports workflows with YAML configuration files for better transparency, reproducibility, and long-term back-
ups.

• Intake_esm-based catalog to find and manage climate data.

• Climate dataset extraction, subsetting, and temporal aggregation.

• Calculate missing variables through Intake-esm’s DerivedVariableRegistry.

• Regridding with xESMF.

• Bias adjustment with xclim.

2.1 xscen

A climate change scenario-building analysis framework, built with Intake-esm catalogs and xarray-based packages such
as xclim and xESMF.

For documentation concerning xscen, see: https://xscen.readthedocs.io/en/latest/

2.1.1 Features

• Supports workflows with YAML configuration files for better transparency, reproducibility, and long-term back-
ups.

• Intake-esm-based catalog to find and manage climate data.

• Climate dataset extraction, subsetting, and temporal aggregation.

• Calculate missing variables through intake-esm’s DerivedVariableRegistry.

• Regridding powered by xESMF.

• Bias adjustment tools provided by xclim.

5

https://pypi.python.org/pypi/xscen
https://anaconda.org/conda-forge/xscen
https://www.repostatus.org/#active
https://github.com/Ouranosinc/xscen/actions/workflows/main.yml
https://coveralls.io/github/Ouranosinc/xscen
https://xscen.readthedocs.io/en/latest/?badge=latest
https://xscen.readthedocs.io/en/latest/
https://intake-esm.readthedocs.io/
https://intake-esm.readthedocs.io/en/latest/how-to/define-and-use-derived-variable-registry.html
https://xesmf.readthedocs.io/
https://xclim.readthedocs.io/


xscen Documentation, Release 0.7.25-beta

2.1.2 Installation

Please refer to the installation docs.

2.1.3 Acknowledgments

This package was created with Cookiecutter and the Ouranosinc/cookiecutter-pypackage project template.

2.2 Installation

2.2.1 Official Sources

Because of some packages being absent from PyPI (such as xESMF), we strongly recommend installing xscen in an
Anaconda Python environment.

xscen can be installed directly from conda-forge:

$ conda install -c conda-forge xscen

Note: If you are unable to install the package due to missing dependencies, ensure that conda-forge is listed as a source
in your conda configuration: $ conda config –add channels conda-forge!

If for some reason you wish to install the PyPI version of xscen into an existing Anaconda environment (not recom-
mended), this can be performed with:

$ python -m pip install xscen

2.2.2 Development Installation (Anaconda + pip)

For development purposes, we provide the means for generating a conda environment with the latest dependencies in
an environment.yml file at the top-level of the Github repo.

In order to get started, first clone the repo locally:

$ git clone git@github.com:Ouranosinc/xscen.git

Then you can create the environment and install the package:

$ cd xscen
$ conda env create -f environment.yml

Finally, perform an –editable install of xscen and compile the translation catalogs:

$ python -m pip install -e .
$ make translate

6 Chapter 2. Features

https://xscen.readthedocs.io/en/latest/installation.html
https://github.com/cookiecutter/cookiecutter
https://github.com/Ouranosinc/cookiecutter-pypackage
https://github.com/Ouranosinc/xscen


xscen Documentation, Release 0.7.25-beta

2.3 Good to know

2.3.1 Which function to use when opening data

There are many ways to open data in xscen workflows. The list below tries to make the differences clear:

Search and extract
Using search_data_catalogs() + extract_dataset(). This is the main method recommended
to parse catalogs of “raw” data, data not yet modified by your workflow. It has features meant to ease
the aggregation and extraction of raw files :

• variable conversion and resampling of subdaily data

• spatial and temporal subsetting

• matching historical and future runs for simulations

search_data_catalogs returns a dictionary with a specific catalog for each of the unique id found
in the search. One should then iterate over this dictionary and call extract_dataset on each item.
This then returns a dictionary with a single dataset for each xrfreq. You thus end up with one dataset
per frequency and id.

to_dataset_dict
Using to_dataset_dict(). When all the data you need is in a single catalog (for example, your
ProjectCatalog()) and you don’t need any of the features listed above. Note that this can be com-
bined to a simple .search beforehand, to subset on parts of the catalog. As explained in Columns, it
creates a dictionary with a single Dataset for each combination of id, domain, processing_level
and xrfreq unless different aggregation rules were called during the catalog creation.

to_dataset
Using to_dataset(). Similar to to_dataset_dict, but only returns a single dataset. If the cat-
alog has more than one, the call will fail. It behaves like to_dask(), but exposes options to add
aggregations. This is useful when constructing an ensemble dataset that would otherwise result in
distinct entries in the output of to_dataset_dict. It can usually be used in replacement of a com-
bination of to_dataset_dict and create_ensemble().

open_dataset
Of course, xscen workflows can still use the conventional open_dataset(). Just be aware that
datasets opened this way will lack the attributes automatically added by the previous functions,
which will then result in poorer metadata or even failure for some xscen functions. Same thing
for open_mfdataset(). If one has data listed in a catalog, the functions above will usually provide
what you need, i.e. : xr.open_mfdataset(cat.df.path) is very rarely optimal.

create_ensemble
With to_dataset() or ensemble_stats(), you should usually find what you need.
create_ensemble() is not needed in xscen workflows.

2.3. Good to know 7

https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset
https://docs.xarray.dev/en/stable/generated/xarray.open_mfdataset.html#xarray.open_mfdataset


xscen Documentation, Release 0.7.25-beta

2.3.2 Which function to use when resampling data

extract_dataset
extract_dataset()’s resampling capabilities are meant to provide daily data from finer sources.

resample
:py:func`xscen.extract.resample` extends xarray’s resample methods with support for weighted re-
sampling when starting from data coarser than daily and for handling of missing timesteps or values.

xclim indicators
Through compute_indicators(), xscen workflows can easily use xclim indicators to go from daily
data to coarser (monthly, seasonal, annual), with missing values handling. This option will add more
metadata than the two firsts.

2.3.3 Metadata translation

xscen itself does not add many translatable attributes, but when it does, it will look into xclim’s options for which
locales to translate them to. Similar to xclim, it will always add a particular attribute in english and then translations
with the same attribute name suffixed by “_XX”, where “XX” is the two-letter language code, as set in the ISO-639-1
standard. For example, if a function adds a long_name and Inuktitut translation is activated, the function will also add
a long_name_iu attribute.

In a config file, activating French translations for both xclim’s indicators and xscen (and figanos) is done with :

xclim:
metadata_locales:

- fr

Which can also be activated in the code using xclim.core.options.set_options(). Note that this only applies
to attributes that are added to a dataset. Some xscen functions will instead update an existing attribute. For example,
when calculating the climatology of a variable with long_name Mean temperature, climatological_mean() will
update the long_name as 30-year average of Mean temperature. This automatic update is done for all locales available
in the variable, no matter what xclim option is activated. For example, if a long_name_eu exists in the variable and
a Basque translation catalog exists in that xscen instance, then the attribute will be translated, no matter what xclim’s
metadata_locales is set to.

Translation is of course not automatic but relies on manually populated gettext catalogs. xscen ships with a catalog of
french (fr) translations. See Translating xscen to learn how to add translations to xscen. xclim’s documentation of the
same subject is here.

If your xscen is installed in “editable” mode in its source directory (pip install -e .), you should run make
translate each time you pull changes from the upstream source.

2.3.4 Module-wide options

As seen above, it can be useful to use the “special” sections of the config file to set some module-wide options. For
example:

logging:
# same arguments as python's logging.config.dictConfig

xarray:
keep_attrs: True

xclim:
metadata_locales:

(continues on next page)

8 Chapter 2. Features

https://xclim.readthedocs.io/en/stable/indicators.html
https://en.wikipedia.org/wiki/ISO_639-1
https://docs.python.org/3/library/gettext.html?highlight=gettext#module-gettext
https://xclim.readthedocs.io/en/stable/internationalization.html


xscen Documentation, Release 0.7.25-beta

(continued from previous page)

- fr
check_missing: "skip"

warning:
# warning_category : filter_action
all: ignore

2.3.5 Global warming dataset

The xscen.extract.get_warming_level() and xscen.extract.subset_warming_level() functions use a
custom made database of global temperature averages to find the global warming levels of known climate simulations.
The database is stored as a netCDF file inside the package itself. It stores the global temperature average (land and
ocean) from 1850 to 2100 for multiple simulations (not all simulations cover the entire temporal range). Simulations
are defined through 4 fields:

• mip_era : “CMIP6”, “CMIP5” or “obs” (see below)

• source : The model name for GCM (same as the source column) and the driving model name for RCM (driv-
ing_model column)

• experiment : The CMIP experiment name of the run. The “historical” and “pre-industrial” exper-
iments have been merged into each future experiment (similar to what match_hist_and_fut does in
search_data_catalogs())

• member : The realization variant label of the run (same as the member column)

An extra data_source field is also available and describes how the data has been obtained:

• “IPCC Atlas” : The timeseries was copied directly from the public data of the IPCC Atlas’

• “From Amon” : The monthly temperature average was resampled annually and averaged over the globe using a
cos-lat weighting

• “From Amon with xscen” : Same, xscen was used to perform the computation.

In addition to the climate simulations, a few “observational” datasets are made available in the database. The choice
of datasets and the methodology was adapted from the WMO’s State of the Global Climate 2021. However, to have
some consistency between these and the simulated series, an estimated 1850-1900 mean temperature was added to the
WMO-compliant anomalies to get absolute values. Keep in mind that this is only an estimation, the timeseries should
only be used to compute anomalies. The observational series have a short dataset name in the source field, “obs” in
mip_era and experiment, and an empty member (“”). The data_source is noted : “Computed following WMO
guidelines”.

2.4 Examples

2.4.1 Using and understanding Catalogs

INFO

Catalogs in xscen are built upon Datastores in intake_esm. For more information on basic usage, such as the
search() function, please consult their documentation.

Catalogs are made of two files:

2.4. Examples 9

https://github.com/Ouranosinc/xscen/blob/main/xscen/data/IPCC_annual_global_tas.nc
https://github.com/IPCC-WG1/Atlas/tree/main/datasets-aggregated-regionally/data
https://library.wmo.int/idurl/4/56300
https://intake-esm.readthedocs.io/en/stable/


xscen Documentation, Release 0.7.25-beta

• JSON file containing metadata such as the catalog’s title, description etc. It also contains an attribute catalog_file
that points towards the CSV. Most xscen catalog will have very similar JSON files.

• CSV file containing the catalog itself. This file can be zipped.

Two types of catalogs have been implemented in xscen.

• Static catalogs: A `DataCatalog <../xscen.rst#xscen.catalog.DataCatalog>`__ is a read-only intake-esm
catalog that contains information on all available data. Usually, this type of catalog should only be consulted at
the start of a new project.

• Updatable catalogs: A `ProjectCatalog <../xscen.rst#xscen.catalog.ProjectCatalog>`__ is a DataCatalog
with additional write functionalities. This kind of catalog should be used to keep track of the new data created
during the course of a project, such as regridded or bias-corrected data, since it can update itself and append
new information to the associated CSV file.

NOTE: As to not accidentaly lose data, both catalogs currently have no function to remove data from the CSV file.
However, upon initialisation and when updating or refreshing itself, the catalog validates that all entries still exist and,
if files have been manually removed, deletes their entries from the catalog.

Catalogs in xscen are made to follow a nomenclature that is as close as possible to the Python Earth Science Standard
Vocabulary : https://github.com/ES-DOC/pyessv. The columns are listed below but for more details and concrete
examples about the entries, consult the relevant page in the documentation:

Column name Description
id Unique DatasetID generated by xscen based on a subset of columns.
type Type of data: [forecast, station-obs, gridded-obs, reconstruction, simulation]
processing_level Level of post-processing reached: [raw, extracted, regridded, biasadjusted]
bias_adjust_institution Institution that computed the bias adjustment.
bias_adjust_project Name of the project that computed the bias adjustment.
mip_era CMIP Generation associated with the data.
activity Model Intercomparison Project (MIP) associated with the data.
driving_model Name of the driver.
institution Institution associated with the source.
source Name of the model or the dataset.
experiment Name of the experiment of the model.
member Name of the realisation (or of the driving realisation in the case of RCMs).
xrfreq Pandas/xarray frequency.
frequency Frequency in letters (CMIP6 format).
variable Variable(s) in the dataset.
domain Name of the region covered by the dataset.
date_start First date of the dataset.
date_end Last date of the dataset.
version Version of the dataset.
format Format of the dataset.
path Path to the dataset.

Individual projects may use a different set of columns, but those will always be present in the official Ouranos internal
catalogs. Some parts of xscen will however expect certain column names, so diverging from the official list is to be
done with care.

10 Chapter 2. Features

https://github.com/ES-DOC/pyessv


xscen Documentation, Release 0.7.25-beta

Basic Catalog Usage

If an official catalog already exists, it should be opened using xs.DataCatalog by pointing it to the JSON file:

[ ]: from pathlib import Path

from xscen import DataCatalog, ProjectCatalog

# Prepare a dummy folder where data will be put
output_folder = Path().absolute() / "_data"
output_folder.mkdir(exist_ok=True)

DC = DataCatalog(f"{Path().absolute()}/samples/pangeo-cmip6.json")
DC

The content of the catalog can be accessed by a call to df, which will return a pandas.DataFrame.

[ ]: # Access the catalog
DC.df[0:3]

The unique function allows listing unique elements for either all the catalog or a subset of columns. It can be called
in a few various ways, listed below:

[ ]: # List all unique elements in the catalog, returns a pandas.Series
DC.unique()

[ ]: # List all unique elements in a subset of columns, returns a pandas.Series
DC.unique(["variable", "frequency"])

[ ]: # List all unique elements in a single columns, returns a list
DC.unique("id")[0:5]

Basic .search() commands

The search function comes from intake-esm and allows searching for specific elements in the catalog’s columns. It
accepts both wildcards and regular expressions (except for variable, which must be exact due to being in tuples).

While regex isn’t great at inverse matching (“does not contain”), it is possible. Here are a few useful commands:

- ^string : Starts with string

- string$ : Ends with string

- ^(?!string).*$ : Does not start with string

- .*(?<!string)$ : Does not end with string

- ^((?!string).)*$ : Does not contain substring

- ^(?!string$).*$ : Is not that exact string

This website can be used to test regex commands: https://regex101.com/

2.4. Examples 11

https://regex101.com/


xscen Documentation, Release 0.7.25-beta

[ ]: # Regex: Find all entries that start with "ssp"
print(DC.search(experiment="^ssp").unique("experiment"))

[ ]: # Regex: Exclude all entries that start with "ssp"
print(DC.search(experiment="^(?!ssp).*$").unique("experiment"))

[ ]: # Regex: Find all experiments except the exact string "ssp126"
print(DC.search(experiment="^(?!ssp126$).*$").unique("experiment"))

[ ]: # Wildcard: Find all entries that start with NorESM2
print(DC.search(source="NorESM2.*").unique("source"))

Notice that the search function returns everything available that matches some of the criteria.

[ ]: # r1i1p1f1 sftlf is not available
DC.search(

source="NorESM2-MM",
experiment="historical",
member=["r1i1p1f1", "r2i1p1f1"],
variable=["sftlf", "pr"],

).df

You can restrict your search to only keep entries that matches all the criteria across a list of columns.

[ ]: # Only returns variables that have all members, source and experiment asked for. In this␣
→˓case, pr, but not sftlf.
DC.search(

source="NorESM2-MM",
experiment="historical",
member=["r1i1p1f1", "r2i1p1f1"],
variable=["sftlf", "pr"],
require_all_on=["variable"],

).df

It is also possible to search for files that intersect a specific time period.

[ ]: DC.search(periods=[["2016", "2017"]]).unique(["date_start", "date_end"])

Advanced search: xs.search_data_catalogs

search has multiple notable limitations for more advanced searches:

• It can’t match specific criteria together, such as finding a dataset that would have both 3h precipitation and daily
temperature.

• It has no explicit understanding of climate datasets, and thus can’t match historial and future simulations together
or know how realization members or grid resolutions work.

xs.search_data_catalogs was thus created as a more advanced version that is closer to the needs of climate ser-
vices. It also plays the double role of preparing certain arguments for the extraction function.

Due to how different reference datasets are from climate simulations, this function might have to be called multiple
times and the results concatenated into a single dictionary. The main arguments are:

12 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

• variables_and_freqs is used to indicate which variable and which frequency is required. NOTE: With the
exception of fixed fields, where ‘fx’ should be used, frequencies here use the pandas nomenclature (‘D’, ‘H’,
‘6H’, ‘MS’, etc.).

• other_search_criteria is used to search for specific entries in other columns of the catalog, such as activity.
require_all_on can also be passed here.

• exclusions is used to exclude certain simulations or keywords from the results.

• match_hist_and_fut is used to indicate that RCP/SSP simulations should be matched with their historical
counterparts.

• periods is used to search for specific time periods.

• allow_resampling is used to allow searching for data at higher frequencies than requested.

• allow_conversion is used to allow searching for calculable variables, in the case where the requested variable
would not be available.

• restrict_resolution is used to limit the results to the finest or coarsest resolution available for each source.

• restrict_members is used to limit the results to a maximum number of realizations for each source.

• restrict_warming_level is used to limit the results to only datasets that are present in the csv used for
calculating warming levels. You can also pass a dict to verify that a given warming level is reached.

Note that compared to search, the result of search_data_catalog is a dictionary with one entry per unique ID. A
given unique ID might contain multiple datasets as per intake-esm’s definition, because it groups catalog lines per
id - domain - processing_level - xrfreq. Thus, it would separate model data that exists at different frequencies.

Example 1: Multiple variables and frequencies + Historical and future

Let’s start by searching for CMIP6 data that has subdaily precipitation, daily minimum temperature and the land fraction
data. The main difference compared to searching for reference datasets is that in most cases, match_hist_and_fut
will be required to match historical simulations to their future counterparts. This works for both CMIP5 and CMIP6
nomenclatures.

[ ]: import xscen as xs

variables_and_freqs = {"tasmin": "D", "pr": "3H", "sftlf": "fx"}
other_search_criteria = {"institution": ["NOAA-GFDL"]}

cat_sim = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs=variables_and_freqs,
other_search_criteria=other_search_criteria,
match_hist_and_fut=True,

)

cat_sim

If required, at this stage, a dataset can be looked at in more details. If we examine the results (look at the ‘date_start’
and ‘date_end’ columns), we’ll see that it successfully found historical simulations in the CMIP activity and renamed
both their activity and experiment to match the future simulations.

[ ]: cat_sim["ScenarioMIP_NOAA-GFDL_GFDL-CM4_ssp585_r1i1p1f1_gr1"].df

2.4. Examples 13



xscen Documentation, Release 0.7.25-beta

Example 2: Restricting results

The two previous search results were the same simulation, but on 2 different grids (gr1 and gr2). If desired,
restrict_resolution can be called to choose the finest or coarsest grid.

[ ]: variables_and_freqs = {"tasmin": "D", "pr": "3H", "sftlf": "fx"}
other_search_criteria = {"institution": ["NOAA-GFDL"], "experiment": ["ssp585"]}

cat_sim = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs=variables_and_freqs,
other_search_criteria=other_search_criteria,
match_hist_and_fut=True,
restrict_resolution="finest",

)

cat_sim

Similarly, if we search for historical NorESM2-MM data, we’ll find that it has 3 members. If desired,
restrict_members can be called to choose a maximum number of realization per model.

[ ]: variables_and_freqs = {"tasmin": "D"}
other_search_criteria = {"source": ["NorESM2-MM"], "experiment": ["historical"]}

cat_sim = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs=variables_and_freqs,
other_search_criteria=other_search_criteria,
restrict_members={"ordered": 2},

)

cat_sim

Finally, restrict_warming_level can be used to be sure that the results either exist in xscen’s warming level
database (if a boolean), or reach a given warming level.

[ ]: variables_and_freqs = {"tasmin": "D"}

cat_sim = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs=variables_and_freqs,
match_hist_and_fut=True,
restrict_warming_level={

"wl": 2
}, # SSP126 gets eliminated, since it doesn't reach +2°C by 2100.

)

cat_sim

14 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Example 3: Search for data that can be computed from what’s available

allow_resampling and allow_conversion are powerful search tools to find data that doesn’t explicitely exist in
the catalog, but that can easily be computed.

[ ]: cat_sim_adv = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs={"evspsblpot": "D", "tas": "YS"},
other_search_criteria={"source": ["NorESM2-MM"], "processing_level": ["raw"]},
match_hist_and_fut=True,
allow_resampling=True,
allow_conversion=True,

)
cat_sim_adv

If we examine the SSP5-8.5 results, we’ll see that while it failed to find evspsblpot, it successfully understood that
tasmin and tasmax can be used to compute it. It also understood that daily tasmin and tasmax is a valid search result
for {tas: YS}, since it can be computed first, then aggregated to a yearly frequency.

[ ]: cat_sim_adv["ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn"].unique()

It’s also possible to search for multiple frequencies at the same time by using a list of xrfreq.

[ ]: cat_sim_adv_multifreq = xs.search_data_catalogs(
data_catalogs=[f"{Path().absolute()}/samples/pangeo-cmip6.json"],
variables_and_freqs={"tas": ["D", "MS", "YS"]},
other_search_criteria={

"source": ["NorESM2-MM"],
"processing_level": ["raw"],
"experiment": ["ssp585"],

},
match_hist_and_fut=True,
allow_resampling=True,
allow_conversion=True,

)
print(

cat_sim_adv_multifreq[
"ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn"

]._requested_variable_freqs
)

Derived variables

The allow_conversion argument is built upon xclim’s virtual indicators module and intake-esm’s Derived-
VariableRegistry in a way that should be seamless to the user. It works by using the methods defined in xscen/
xclim_modules/conversions.yml to add a registry of derived variables that exist virtually through computation
methods.

In the example above, we can see that the search failed to find evspsblpot within NorESM2-MM, but understood that
tasmin and tasmax could be used to estimate it using xclim’s potential_evapotranspiration.

Most use cases should already be covered by the aforementioned file. The preferred way to add new methods is to
submit a new indicator to xclim, and then to add a call to that indicator in conversions.yml. In the case where this

2.4. Examples 15

https://ncar.github.io/esds/posts/2021/intake-esm-derived-variables/
https://ncar.github.io/esds/posts/2021/intake-esm-derived-variables/
https://xclim.readthedocs.io/en/stable/contributing.html


xscen Documentation, Release 0.7.25-beta

is not possible or where the transformation would be out of scope for xclim, the calculation can be implemented into
xscen/xclim_modules/conversions.py instead.

Alternatively, if other functions or other parameters are required for a specific use case (e.g. using
relative_humidity instead of relative_humidity_from_dewpoint, or using a different formula), then a cus-
tom YAML file can be used. This custom file can be referred to using the conversion_yaml argument of
search_data_catalogs.

.derivedcat can be called on a catalog to obtain the list of DerivedVariable and the function associated to them. In
addition, ._requested_variables will display the list of variables that will be opened by the to_dataset_dict()
function, including DerivedVariables.

WARNING

_requested_variables should NOT be modified under any circumstance, as it is likely to make
to_dataset_dict() fail. To add some transparency on which variables have been requested and which are
the dependent ones, xscen has added _requested_variables_true and _dependent_variables. This is
very likely to be changed in the future.

[ ]: cat_sim_adv["ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn"].derivedcat

[ ]: print(cat_sim_adv["ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn"]._requested_variables)
print(

f"Requested: {cat_sim_adv['ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn']._
→˓requested_variables_true}"
)
print(

f"Dependent: {cat_sim_adv['ScenarioMIP_NCC_NorESM2-MM_ssp585_r1i1p1f1_gn']._
→˓dependent_variables}"
)

INFO

allow_conversion currently fails if:

The requested DerivedVariable also requires a DerivedVariable itself.

The dependent variables exist at different frequencies (e.g. ‘pr @1hr’ & ‘tas @3hr’)

Creating a New Catalog from a Directory

Initialisation

The create argument of ProjectCatalog can be called to create an empty ProjectCatalog and a new set of JSON
and CSV files.

By default, xscen will populate the JSON with generic information, defined in catalog.esm_col_data. That meta-
data can be changed using the project argument with entries compatible with the ESM Catalog Specification (refer
to the link above). Usually, the most useful and common entries will be:

• title

• description

16 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

xscen will also instruct intake_esm to group catalog lines per id - domain - processing_level - xrfreq. This should
be adequate for most uses. In the case that it is not, the following can be added to project:

• “aggregation_control”: {“groupby_attrs”: [list_of_columns]}

Other attributes and behaviours of the project definition can be modified in a similar way.

[ ]: project = {
"title": "tutorial-catalog",
"description": "Catalog for the tutorial NetCDFs.",

}

PC = ProjectCatalog(
str(output_folder / "tutorial-catalog.json"),
create=True,
project=project,
overwrite=True,

)

[ ]: # The metadata is stored in PC.esmcat
PC.esmcat

Appending new data to a ProjectCatalog

At this stage, the CSV is still empty. There are two main ways to populate a catalog with data:

• Using xs.ProjectCatalog.update_from_ds to append a Dataset and populate the catalog columns using
metadata.

• Using xs.catutils.parse_directory to parse through existing NetCDF or Zarr data and decode their infor-
mation based on file and directory names.

This tutorial will focus on catutils.parse_directory, as update_from_ds is moreso a function that will be called
during a climate-scenario-generation workflow. See the Getting Started tutorial for more details on update_from_ds.

Parsing a directory

INFO

If you are an Ouranos employee, this section should be of limited use (unless you need to retroactively parse a directory
containing exiting datasets). Please consult the existing Ouranos catalogs using xs.search_data_catalogs instead.

The `parse_directory <../xscen.rst#xscen.catutils.parse_directory>`__ function relies on analyzing patterns to ad-
equately decode the filenames to store that information in the catalog.

• Patterns are a succession of column names in curly brackets. See below for examples. The pattern starts where
the directory path stops.

• If necessary, read_from_file can be used to open the files and read metadata from global attributes. Refer to
the API for Docstrings and usage.

• In cases where some column information is the same across all data, homogenous_info can be used to explicitely
give an attribute to the datasets being processed.

• Anything that isn’t filled will be marked as None.

2.4. Examples 17



xscen Documentation, Release 0.7.25-beta

The following example will search through the samples folder and infer information from the folder names. The file-
name is ignored, except its extension. The variable name and time bounds are read from the file itself.

[ ]: from xscen.catutils import parse_directory

df = parse_directory(
directories=[f"{Path().absolute()}/samples/tutorial/"],
patterns=[

"{activity}/{domain}/{institution}/{source}/{experiment}/{member}/{frequency}/{?:
→˓_}.nc"

],
homogenous_info={

"mip_era": "CMIP6",
"type": "simulation",
"processing_level": "raw",

},
read_from_file=["variable", "date_start", "date_end"],

)
df

Unique Dataset ID

In addition to the parse itself, parse_directory will create a unique Dataset ID that can be used to easily determine
one simulation from another. This can be edited with the id_columns argument of parse_directory, but by default,
IDs are based on CMIP6’s ID structure with additions related to regional models and bias adjustment:

• {bias_adjust_project} _ {mip_era} _ {activity} _ {driving_model} _ {institution} _
{source} _ {experiment} _ {member} _ {domain}

This utility can also be called by itself through xs.catalog.generate_id().

INFO

When constructing IDs, empty columns will be skipped.

[ ]: df.iloc[0]["id"]

Appending data using ProjectCatalog.update()

At this stage, df is a pandas.DataFrame. ProjectCatalog.update is used to append this data to the CSV file and
save the results on disk.

[ ]: PC.update(df)

PC

18 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

More on patterns and advanced features

The patterns argument acts as a reverse format string.

• The “_” format specifier (like in {field:_} allows matching a name containing underscores for this field. The
path separators (/, \) are still excluded. Any format specifier supported by `parse are usable <https://github.
com/r1chardj0n3s/parse>`__.

• Fields starting with a “?” will be ignored in the output. This allows to have readable patterns to identify parts we
know exist, but do not want to be included in the metadata

• The DATES special field will match single dates or date bounds (see below).

• {?:_} is useful in filenames as a “wildcard” matching. For exammple: {?:_}_{DATES}.nc will read in the last
“element” of the filename into date_start and date_end, ignoring all previous parts.

[ ]: # Create fake files for the example:
root = Path(".").absolute() / "_data" / "parser_examples"
root.mkdir(exist_ok=True)

paths = [
# Folder name includes underscore, single year implicitly means the full year
"CCCma/CanESM2/day/tg_mean/tg_mean_1950.nc",
# Fx frequency, no date bounds, strange model name
"CCCma/CanESM-2/fx/sftlf/sftlf_fx.nc",
# Bounds given as range at a monthly frequency
"MIROC/MIROC6/mon/uas/uas_199901-200011.nc",
# Version number included in the source name, range given a years
"ERA/ERA5_v2/yr/heat_wave_frequency/hwf_2100-2399.nc",

]
for path in paths:

(root / path).parent.mkdir(exist_ok=True, parents=True)
with (root / path).open("w") as f:

f.write("example")

Example 1 - wrong

The variable field does not allow underscores, so the first and last files are not parsed correctly.

Notice how the DATES field was parsed into date_start and date_end. It also matched with fx, returning NaT for
both fields, as expected.

[ ]: patt = "{institution}/{source}/{frequency}/{variable}/{?var}_{DATES}.nc"
parse_directory(directories=[root], patterns=[patt])

2.4. Examples 19

https://github.com/r1chardj0n3s/parse
https://github.com/r1chardj0n3s/parse


xscen Documentation, Release 0.7.25-beta

Example 2 - wrong again

We fixed the variable field by allowing underscores. We also modified the filename pattern to match any string, includ-
ing underscores, except for the last element.

Notice how the “1950” part of tg_mean has been converted to date_start='1950-01-01' and
date_end='1950-12-31'.

The source field does not allow underscores, so “ERA5_v2” is not parsed correctly. However, what we would want
is rather to assign “v2” to the version field.

[ ]: patt = "{institution}/{source}/{frequency}/{variable:_}/{?:_}_{DATES}.nc"
parse_directory(directories=[root], patterns=[patt])

Example 3 - Correct!

We added a second pattern that includes the version field.

[ ]: patts = [
"{institution}/{source}_{version}/{frequency}/{variable:_}/{?:_}_{DATES}.nc",
"{institution}/{source}/{frequency}/{variable:_}/{?:_}_{DATES}.nc",

]
parse_directory(directories=[root], patterns=patts)

Example 4 - Filter on folder names

We can filter the results to include only some folders with the dirglob argument.

[ ]: parse_directory(directories=[root], patterns=patts, dirglob="*/CanESM*")

Example 5 - Modifying metadata

We use the cvs (Controlled VocabularieS) argument here to replace some terms found in the paths by others we prefer.

Two replacement types are used : - simple : in the source column, all values of “CanESM-2” are replaced by
“CanESM2” - complex : in the institution column, if the value “MIROC” is seen, it triggers the setting of “global”
in this row’s domain column, overriding whatever was already present in this field.

[ ]: parse_directory(
directories=[root],
patterns=patts,
cvs={

"source": {"CanESM-2": "CanESM2"},
"institution": {"MIROC": {"domain": "global"}},

},
)

20 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Example 6 : Even more complex field processing

In the preceding example, we used the cvs argument to replace values by others, or to trigger replacements based on
values of other columns. The exact value must be matched and map to exact values. Another alternative to transform
the parsed fields is to feed a function to the path parsing step. This is done by declaring a new “type” to the parser. In
the following example, we’ll implement a very useless transformation that reverses the letters of the institution.

[ ]: from xscen.catutils import register_parse_type

@register_parse_type("rev")
def _reverse_word(text):

return "".join(reversed(text))

patts_mod = [
"{institution:rev}/{source}_{version}/{frequency}/{variable:_}/{?:_}_{DATES}.nc",
"{institution:rev}/{source}/{frequency}/{variable:_}/{?:_}_{DATES}.nc",

]
parse_directory(directories=[root], patterns=patts_mod)

Restructuring catalogued files on disk

The opposite operation to parse_directory is also handled by xscen.catutils. In this section, we show how to
create a Path from a xscen-extraced dataset or from a catalog entry.

Simple : template string and attributes

Given a dataset that was opened by xs.extract_dataset or DataCatalog.to_dataset(), we can easily construct
a path from the xscen-added attributes.

[ ]: # Open
ds = PC.search(variable="tas", experiment="ssp585").to_dataset()

path_template = "{institution}/{source}/{experiment}_{frequency}.nc"

print(path_template.format(**xs.utils.get_cat_attrs(ds)))

While this method is simple, it can’t handle neither the list-like variable field nor the date_start and date_end
datetime fields.

Complete : build_path

The `build_path <../xscen.rst#xscen.catutils.build_path>`__ function has a more complex interface to be used in
more complex workflows.

The default parameters has a pretty good folder structure that depends on the columns type (usually one of simulation,
reconstruction or station-obs) and processing_level (often raw, biasadjusted or something else).

[ ]: xs.catutils.build_path(ds)

2.4. Examples 21



xscen Documentation, Release 0.7.25-beta

The folder schema can be passed explictly, as a dictionary with two entries: - “folders” : a list of fields to build the
folder hierarchy. - “filename” : a list of fields to build the filename.

In both cases, a special “DATES” field can be given. It will be translated to the most efficient way to write the temporal
bounds of the dataset.

[ ]: custom_schema = {
"folders": ["type", "institution", "source", "experiment"],
"filename": ["variable", "DATES"],

}
xs.catutils.build_path(ds, schemas=custom_schema)

The function has more options:

• A “root” folder can be specified

• Other fields can be passed to override those in the data or fill for missing ones.

[ ]: xs.catutils.build_path(ds, root=Path("/tmp"), domain="REG")

Above, we called the function with a dataset. In this case, the “facets” are extracted from various sources, with this
priority (highest at the top):

1. Facets passed explicitly to build_path as keyword arguments

2. Attributes prefixed with “cat:”

3. Other Attributes

4. variable names, start and end date, and frequency, as extracted by parse_from_date.

But the function can also take a single dataframe row:

[ ]: xs.catutils.build_path(PC.search(variable="tas", experiment="ssp585").df.iloc[0])

Or a full DataFrame/Catalog. In this case, the return value is a DataFrame, copy form the catalog, with a “new_path”
column added.

[ ]: # We show only three columns of the output catalog
xs.catutils.build_path(PC.search(variable="tas"))[["id", "path", "new_path"]]

This can be used in a workflow that renames or copies the files to their new name, usually using shutil.

[ ]: import shutil as sh

# Create the destination folder
root = Path(".").absolute() / "_data" / "path_builder_examples"
root.mkdir(exist_ok=True)

# Get new names:
newdf = xs.catutils.build_path(PC, root=root)

# Copy files
for i, row in newdf.iterrows():

Path(row["new_path"]).parent.mkdir(parents=True, exist_ok=True)
sh.copy(row["path"], row["new_path"])
print(f"Copied {row['path']}\n\tto {row['new_path']}")

(continues on next page)

22 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

# Update catalog:
PC.df["path"] = newdf["new_path"]
PC.update()

2.4.2 Getting Started

This Notebook will go through all major steps of creating a climate scenario using xscen. These steps are:

• search_data_catalogs to find a subset of datasets that match a given project’s requirements.

• extract_dataset to extract them.

• regrid_dataset to regrid all data to a common grid.

• train and adjust to bias correct the raw simulations.

• compute_indicators to compute a list of indicators.

• climatological_op and spatial_mean for spatio-temporal aggregation.

• compute_deltas to compute deltas.

• ensemble_stats for ensemble statistics.

• clean_up for minor adjustments that have to be made in preparation for the final product.

Initialisation

Typically, the first step should be to create a new ProjectCatalog to store the files that will be created during the process.
More details on basic usage are provided in the Catalogs Notebook.

[ ]: from pathlib import Path

import xscen as xs

# Folder where to put the data
output_folder = Path().absolute() / "_data"
output_folder.mkdir(exist_ok=True)

project = {
"title": "example-gettingstarted",
"description": "This is an example catalog for xscen's documentation.",

}

pcat = xs.ProjectCatalog(
str(output_folder / "example-gettingstarted.json"),
create=True,
project=project,
overwrite=True,

)

2.4. Examples 23



xscen Documentation, Release 0.7.25-beta

Searching a subset of datasets within DataCatalogs

INFO

At this stage, the search criteria should be for variables that will be bias corrected, not necessarily the variables required
for the final product. For example, if sfcWindfromdir is the final product, then uas and vas should be searched for
since these are the variables that will be bias corrected.

xs.search_data_catalogs is used to consult a list of DataCatalogs and find a subset of datasets that match given
search parameters. More details on that function and possible usage are given in the Understanding Catalogs Notebook.

The function also plays the double role of preparing certain arguments for the extraction function, as detailed in the
relevant section of this tutorial.

Due to how different reference datasets are from climate simulations, this function might have to be called multiple
times and the results concatenated into a single dictionary.

For the purpose of this tutorial, temperatures and the land fraction from NorESM2-MM will be used:

[ ]: variables_and_freqs = {"tas": "D", "sftlf": "fx"}
other_search_criteria = {

"source": ["NorESM2-MM"],
"processing_level": ["raw"],
"experiment": "ssp245",

}

cat_sim = xs.search_data_catalogs(
data_catalogs=[str(output_folder / "tutorial-catalog.json")],
variables_and_freqs=variables_and_freqs,
other_search_criteria=other_search_criteria,
periods=[2001, 2002],
match_hist_and_fut=True,

)

cat_sim

The result of search_data_catalog is a dictionary with one entry per unique ID. Note that a unique ID can be
associated to multiple intake datasets, as is the case here, because intake-esm groups catalog lines per id - domain -
processing_level - xrfeq.

[ ]: cat_sim["CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region"].df

Extracting data

WARNING

It is heavily recommended to stop and analyse the results of search_data_catalogs before proceeding to the
extraction function.

24 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Defining the region

The region for a given project is defined using a dictionary with the relevant information to be used by clisops.core.
subset. The required fields are as follows:

region =

"name": str, {this will overwrite the *domain* column in the catalog}
"method": str, [gridpoint, bbox, shape, sel]
"tile_buffer": float, {approximate number of pixels used to expand the domain based␣
→˓on model resolution}
**kwargs {other arguments to send `clisops`}

The argument tile_buffer (optional) is used to apply a buffer zone around the region that is adjusted dynamically
according to model resolution during the extraction process (for bbox and shape only). This is useful to make sure
that grid cells that only partially cover the region are selected too.

The documentation for the supported subsetting methods are in the following links:

• gridpoint

• bbox

• shape

• sel is simply a call to xarray

[ ]: region = {
"name": "example-region",
"method": "bbox",
"tile_buffer": 1.5,
"lon_bnds": [-75, -74],
"lat_bnds": [45, 46],

}

Preparing arguments for xarray

xscen makes use of intake_esm’s to_dataset_dict() for the extraction process, which will automatically compute
missing variables as required. Also, this function manages Catalogs, IDs, and both NetCDF and Zarr files seamlessly.
When the catalog is made of a single dataset, to_dataset() can be used instead to directly obtain an xr.Dataset
instead of a dictionary.

There are a few key differences compared to using xarray directly, one of which being that it uses xr.open_dataset,
even when multiple files are involved, with a subsequent call to xr.combine_by_coords. Kwargs are therefore sep-
arated in two:

• xr_open_kwargs is used for optional arguments in xarray.open_dataset.

• xr_combine_kwargs is used for optional arguments in xarray.combine_by_coords.

More information on possible kwargs can be obtained here: xarray.open_dataset & xarray.combine_by_coords

[ ]: # Kwargs for xr.open_dataset
xr_open_kwargs = {"drop_variables": ["height", "time_bnds"], "engine": "h5netcdf"}

# Kwargs for xr.combine_by_coords
xr_combine_kwargs = {"data_vars": "minimal"}

2.4. Examples 25

https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_gridpoint
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_bbox
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_shape
https://intake-esm.readthedocs.io/en/stable/reference/api.html?highlight=to_dataset_dict
https://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html
https://xarray.pydata.org/en/stable/generated/xarray.combine_by_coords.html


xscen Documentation, Release 0.7.25-beta

Extraction function

Extraction is done on each dataset by calling xs.extract_dataset(). Since the output could have multiple frequen-
cies, the function returns a python dictionary with keys following the output frequency.

• catalog is the DataCatalog to extract.

• variables_and_freqs is the same as previously used for search_data_catalogs.

• periods is used to extract specific time periods.

• to_level will change the processing_level of the output. Defaults to “extracted”.

• region, xr_open_kwargs, and xr_combine_kwargs are described above.

NOTE: Calling the extraction function without passing by search_data_catalogs beforehand is possible, but will
not support DerivedVariables.

NOTE

extract_dataset currently only accepts a single unique ID at a time.

[ ]: # Example with a single simulation
ds_dict = xs.extract_dataset(

catalog=cat_sim["CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region"],
variables_and_freqs=variables_and_freqs,
periods=[2001, 2002],
region=region,
xr_open_kwargs=xr_open_kwargs,
xr_combine_kwargs=xr_combine_kwargs,

)

ds_dict

Saving files to disk

extract_dataset does not actually save anything to disk. It simply opens and prepares the files as per requested,
using lazy computing. The result is a python dictionary containing the results, separated per xrfreq.

xscen has two functions for the purpose of saving data: save_to_netcdf and save_to_zarr. If possible for a given
project, it is strongly recommended to use Zarr files since these are often orders of magnitude faster to read and create
compared to NetCDF. They do have a few quirks, however:

• Chunk size must separate the dataset in exactly equal chunks (with the exception of the last). While it is recom-
mended to calculate ideal chunking and provide them explicitely to the function, io.estimate_chunks() can
be used to automatically estimate a decent chunking. In a similar way, io.subset_maxsize() can be used to
roughly cut a dataset along the time dimension into subsets of a given size (in Gb), which is especially useful for
saving NetCDF files. Chunk sizes can be passed to the two saving functions in a dictionary. Spatial dimensions
can be generalized as 'X' and 'Y', which will be mapped to the xarray.Dataset’s actual grid type’s dimension
names.

• Default behaviour for a Zarr is to act like a directory, with each new variable being assigned a subfolder. This is
great when all required variables have the same dimensions and frequency, but will crash otherwise. If you have
daily tasmax and subdaily pr, for example, they need to be assigned different paths.

26 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Updating the catalog

intake-esm will automatically copy the catalog’s entry in the dataset’s metadata, with a cat:attr format. Where ap-
propriate, xscen updates that information to keep the metadata up to date with the manipulations. ProjectCatalog.
update_from_ds will in turn read the metadata of a Dataset and fill in the information into a new catalog entry.

This loop means that upon completing a step in the creation of a climate scenario, ProjectCatalog.
update_from_ds() can be called to update the catalog.

[ ]: for ds in ds_dict.values():
filename = str(

output_folder
/ f"{ds.attrs['cat:id']}.{ds.attrs['cat:domain']}.{ds.attrs['cat:processing_level

→˓']}.{ds.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds, filename, rechunk=chunks, mode="o")

# Strongly suggested to update the project catalog AFTER you save to disk, in case␣
→˓it crashes during the process

pcat.update_from_ds(ds=ds, path=filename, info_dict={"format": "zarr"})

pcat.df

Simplifying the call to extract_dataset() with search_data_catalogs()

When a catalog was produced using search_data_catalogs, xscen will automatically save the requested periods
and frequencies, in addition to DerivedVariables. This means that these items do not need to be included during the
call to extract_dataset and make it possible to extract datasets that have different requirements (such as reference
datasets and future simulations).

[ ]: cat_sim[
"CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region"

]._requested_periods

[ ]: print(
cat_sim[

"CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region"
]._requested_variables_true

)
print(

cat_sim[
"CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region"

]._requested_variable_freqs
)

Since cat_sim contains multiple datasets, extracting the data should be done by looping on .items() or .values().
Also, since ‘CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp126_r1i1p1f1_example-region’ was extracted in the pre-
vious step, pcat.exists_in_cat can be used to skip re-extracting.

[ ]: for key, dc in cat_sim.items():
if not pcat.exists_in_cat(id=key, processing_level="extracted"):

(continues on next page)

2.4. Examples 27



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

dset_dict = xs.extract_dataset(
catalog=dc,
region=region,
xr_open_kwargs=xr_open_kwargs,
xr_combine_kwargs=xr_combine_kwargs,

)

for ds in dset_dict.values():
filename = str(

output_folder
/ f"{ds.attrs['cat:id']}.{ds.attrs['cat:domain']}.{ds.attrs['cat:

→˓processing_level']}.{ds.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds, filename, rechunk=chunks, mode="o")

# Strongly suggested to update the project catalog AFTER you save to disk,␣
→˓in case it crashes during the process

pcat.update_from_ds(ds=ds, path=filename, info_dict={"format": "zarr"})

Regridding data

NOTE

Regridding in xscen is built upon xESMF. For more information on basic usage and available regridding methods,
please consult their documentation. Their masking and extrapolation tutorial is of particular interest.

More details on the regridding functions themselves can be found within the ESMPy and ESMF documentation.

The only requirement for using datasets in xESMF is that they contain lon and lat, with mask as an optional data variable.
Using these, the package can manage both regular and rotated grids. The main advantage of xESMF compared to
other tools such as scipy’s griddata, in addition to the fact that the methods are climate science-based, is that the
transformation weights are calculated once and broadcasted on the time dimension.

Preparing the destination grid

xscen currently does not explicitely support any function to create a destination grid. If required, however, xESMF
itself has utilities that can easily create custom regular grids, such as xesmf.util.cf_grid_2d.

[ ]: import xesmf

ds_grid = xesmf.util.cf_grid_2d(-75, -74, 0.25, 45, 48, 0.55)

# cf_grid_2d does not set the 'axis' attribute
ds_grid["lon"].attrs["axis"] = "X"
ds_grid["lat"].attrs["axis"] = "Y"

# xscen will use the domain to re-assign attributes, so it is important to set it up for␣
→˓custom grids like this

(continues on next page)

28 Chapter 2. Features

https://xesmf.readthedocs.io/en/latest/
https://xesmf.readthedocs.io/en/latest/notebooks/Masking.html
https://earthsystemmodeling.org/esmpy/
https://earthsystemmodeling.org/


xscen Documentation, Release 0.7.25-beta

(continued from previous page)

ds_grid.attrs["cat:domain"] = "finer-grid"
ds_grid

Masking grid cells

Masks can be used on both the original grid and the destination grid to ignore certain grid cells during the regridding
process. These masks follow the ESMF convention, meaning that the mask is a variable within the Dataset, named mask
and comprised of 0 and 1.

xs.create_mask will create an adequate DataArray, following the instructions given by mask_args. In the case of
variables that have a time component, the first timestep will be chosen.

mask_args:
- 'variable' (optional)
- 'where_operator' (optional)
- 'where_threshold' (optional)
- 'mask_nans': bool

[ ]: # Will mask all pixels that do not match these requirements (at least 25% land)
mask_args = {

"variable": "sftlf",
"where_operator": ">",
"where_threshold": 25,
"mask_nans": True,

}

# to_dataset() will open the dataset, as long as the search() gave a single result.
ds_example = pcat.search(

id="CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region",
processing_level="extracted",
variable="sftlf",

).to_dataset()

# Masking function
ds_example["mask"] = xs.create_mask(ds_example, mask_args=mask_args)

[ ]: import matplotlib.patches as patches
import matplotlib.pyplot as plt

# Plot sftlf
ax = plt.subplot(121)
ds_example.sftlf.plot.imshow()
plt.title("sftlf")

# Plot the mask
plt.subplot(122)
ds_example.mask.plot.imshow()
plt.title("mask")

2.4. Examples 29



xscen Documentation, Release 0.7.25-beta

Preparing arguments for xESMF.Regridder

NOTE

xESMF’s API appears to be broken on their ReadTheDocs. For a list of available arguments and options in
Regridder(), please consult their Github page directly.

xESMF.Regridder is the main utility that computes the transformation weights and performs the regridding. It is
supported by many optional arguments and methods, which can be called in xscen through regridder_kwargs.

Available options are:

method: str
Regridding method. More details are given within the ESMF documentation and xESMF␣

→˓tutorials.
- 'bilinear' (Default)
- 'nearest_s2d'
- 'nearest_d2s'
- 'conservative'
- 'conservative_normed'
- 'patch'

extrap_method: str
Extrapolation method. Defaults to None.
- 'inverse_dist'
- 'nearest_s2d'

extrap_dist_exponent: float
Exponent to raise the distance to when calculating weights for extrapolation.
Defaults to 2.0.

extrap_num_src_pnts : int, optional
The number of source points to use for the extrapolation methods that use more than␣

→˓one source point.
Defaults to 8

unmapped_to_nan: boolean, optional
Set values of unmapped points to `np.nan` instead of the ESMF default of 0.
Defaults to True.

periodic: boolean, optional
Only really useful for global grids with non-conservative regridding.

Other options exist in ESMF/ESMPy, but not xESMF. As they get implemented, they should automatically get supported
by xscen.

NOTE

Some utilities that exist in xESMF have not yet been explicitely added to xscen. If conservative regridding is desired,
for instance, some additional scripts might be required on the User’s side to create the lon/lat boundaries

30 Chapter 2. Features

https://github.com/pangeo-data/xESMF/blob/master/xesmf/frontend.py


xscen Documentation, Release 0.7.25-beta

[ ]: regridder_kwargs = {"extrap_method": "inverse_dist"}

Regridding function

Regridding for a Dataset is done through xs.regrid_dataset, which manages calls to xESMF.Regridder and makes
sure that the output is CF-compliant.

• weights_location provides a path where to save the regridding weights (NetCDF file). This file (alongside
reuse_weights=True) is used by xESMF to reuse the transformation weights between datasets that are deemed
to have the same grid and vastly improve the speed of the function.

• intermediate_grids can be called to perform the regridding process in multiple steps. This is recommended
when the jump in resolution is very high between the original and destination grid (e.g. from 3° to 0.08°).

• ds_grid & regridder_kwargs are described above.

[ ]: # to_dataset_dict() is called to cast the search results as xr.Dataset objects
# frequency="^(?!fx$).*$" is used to exclude fixed fields from the results
ds_dict = pcat.search(

processing_level="extracted", frequency="^(?!fx$).*$", domain="example-region"
).to_dataset_dict()

mask_args = {
"variable": "sftlf",
"where_operator": ">",
"where_threshold": 25,
"mask_nans": True,

}

for ds in ds_dict.values():
# Add a mask on the original grid.
ds["mask"] = xs.create_mask(

pcat.search(
id=ds.attrs["cat:id"], processing_level="extracted", variable="sftlf"

).to_dataset(),
mask_args=mask_args,

)

# Regridding function
ds_regrid = xs.regrid_dataset(

ds=ds,
weights_location=str(output_folder / "gs-weights"),
ds_grid=ds_grid,
regridder_kwargs=regridder_kwargs,

)

# Save to zarr
filename = str(

output_folder
/ f"{ds_regrid.attrs['cat:id']}.{ds_regrid.attrs['cat:domain']}.{ds_regrid.attrs[

→˓'cat:processing_level']}.{ds_regrid.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)

(continues on next page)

2.4. Examples 31



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

xs.save_to_zarr(ds=ds_regrid, filename=filename, rechunk=chunks, mode="o")
pcat.update_from_ds(ds_regrid, path=filename, format="zarr")

[ ]: import matplotlib.patches as patches

plt.figure(figsize=[15, 5])

vmin = float(ds.tas.isel(time=0).min())
vmax = float(ds.tas.isel(time=0).max())

ax = plt.subplot(131)
ds.tas.isel(time=0).plot.imshow(vmin=vmin, vmax=vmax)
plt.title("tas: original grid")
rect = patches.Rectangle(

(-75, 45), 1, 2.75, linewidth=1, edgecolor="r", facecolor="none"
)
ax.add_patch(rect)

ax = plt.subplot(132)
(ds.tas.isel(time=0).where(ds.mask == 1)).plot.imshow(vmin=vmin, vmax=vmax)
rect = patches.Rectangle(

(-75, 45), 1, 2.75, linewidth=1, edgecolor="r", facecolor="none"
)
ax.add_patch(rect)
plt.title("tas: original + mask")
plt.tight_layout()

plt.subplot(133)
ds_regrid.tas.isel(time=0).plot.imshow(vmin=vmin, vmax=vmax)
plt.title("tas: regridded with mask + extrapolation")
plt.tight_layout()

Bias adjusting data

NOTE

Bias adjustment in xscen is built upon xclim.sdba. For more information on basic usage and available methods,
please consult their documentation.

Preparing arguments for xclim.sdba

Many optional arguments are used by xclim.sdba during the training and adjustment processes. These options heavily
depend on the bias adjustment method used, so it is recommended to consult their documentation before proceeeding
further.

These arguments can be sent by using xclim_train_kwargs and xclim_adjust_kwargs during the call to xs.
train and xs.adjust respectively.

32 Chapter 2. Features

https://xclim.readthedocs.io/en/stable/sdba.html


xscen Documentation, Release 0.7.25-beta

[ ]: xclim_train_args = {"kind": "+", "nquantiles": 50}

xclim_adjust_args = {"detrend": 3, "interp": "linear", "extrapolation": "constant"}

Bias adjustment function

Bias adjustment is done through xs.train and xs.adjust. They are kept separate to account for cases where a
voluminous dataset would require saving after the training step.

The arguments to train() are:

• dref and dhist indicate the reference and historical datasets.

• var indicates which variable to bias correct.

• period defines the period used for building the transfer function.

• method indicates which bias adjusting method to call within xclim.sdba.

• maximal_calendar instructs on which calendar to use, following this hierarchy: 360_day < noleap < standard
< all_leap

• adapt_freq is used for bias adjusting the frequency of dry/wet days (precipitation only).

• jitter_under adds a random noise under a given threshold.

• jitter_overadds a random noise over a given threshold.

• xclim_train_kwargs is described above.

The arguments to adjust() are:

• dtrain is the result of biasadjust.train.

• dsim is the simulation to bias adjust.

• periods defines the period(s) to bias adjust.

• xclim_adjust_kwargs is described above.

NOTE

These functions currently do not support multiple variables due to the fact that train and adjust arguments might vary.
The function must be called separately for every variable.

[ ]: ds_dict = pcat.search(processing_level="regridded").to_dataset_dict()

# # Open the reference dataset, in this case ERA5-Land
ds_ref = pcat.search(processing_level="extracted", source="ERA5-Land").to_dataset()

# Currently, only a single variable can be bias adjusted at a time
variables = ["tas"]
for v in variables:

for ds in ds_dict.values():
# Train
ds_train = xs.train(

dref=ds_ref,
dhist=ds,

(continues on next page)

2.4. Examples 33



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

var=["tas"],
period=["1981", "2010"],
xclim_train_args=xclim_train_args,

)

# Adjust
ds_adj = xs.adjust(

dtrain=ds_train,
dsim=ds,
periods=["1981", "2050"],
bias_adjust_institution="Ouranos", # add new attribute cat:bias_adjust_

→˓institution
bias_adjust_project="xscen-tutorial", # add new attribute cat:bias_adjust_

→˓project
xclim_adjust_args=xclim_adjust_args,

)

# Save to zarr
filename = str(

output_folder
/ f"{ds_adj.attrs['cat:id']}.{ds_adj.attrs['cat:domain']}.{ds_adj.attrs['cat:

→˓processing_level']}.{ds_adj.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds_adj, dims=["time"], target_mb=50)
xs.save_to_zarr(ds=ds_adj, filename=filename, rechunk=chunks, mode="o")
pcat.update_from_ds(ds_adj, path=filename, format="zarr")

[ ]: ds = pcat.search(
processing_level="regridded",
variable="tas",
id="CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region",

).to_dataset()
ds_adj = pcat.search(

processing_level="biasadjusted",
variable="tas",
id="CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region",

).to_dataset()

vmin = min(
[

float(ds_ref.tas.sel(time=slice("1981", "2010")).mean(dim="time").min()),
float(ds.tas.sel(time=slice("1981", "2010")).mean(dim="time").min()),

]
)
vmax = max(

[
float(ds_ref.tas.sel(time=slice("1981", "2010")).mean(dim="time").max()),
float(ds.tas.sel(time=slice("1981", "2010")).mean(dim="time").max()),

]
)

fig = plt.figure(figsize=(15, 5))
(continues on next page)

34 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

plt.subplot(141)
ds_ref.tas.sel(time=slice("1981", "2010")).mean(dim="time").transpose(

"lat", ...
).plot.imshow(vmin=vmin, vmax=vmax)
plt.title("tas - Ref")

plt.subplot(142)
ds.tas.sel(time=slice("1981", "2010")).mean(dim="time").transpose(

"lat", ...
).plot.imshow(vmin=vmin, vmax=vmax)
plt.title("tas - Raw")

plt.subplot(143)
ds_adj.tas.sel(time=slice("1981", "2010")).mean(dim="time").transpose(

"lat", ...
).plot.imshow(vmin=vmin, vmax=vmax)
plt.title("tas - Bias adjusted")
plt.tight_layout()

plt.subplot(144)
(

ds_adj.tas.sel(time=slice("1981", "2010")).mean(dim="time")
- ds_ref.tas.sel(time=slice("1981", "2010")).mean(dim="time")

).transpose("lat", ...).plot.imshow(vmin=-1, vmax=1, cmap="RdBu_r")
plt.title("Bias (°C)")
plt.tight_layout()

Computing indicators

NOTE

xscen relies heavily on xclim’s YAML support for calculating indicators. For more information on how to build the
YAML file, consult this Notebook.

xs.compute_indicatorsmakes use of xclim’s indicator modules functionalities to compute a given list of indicators.
It is called by either using:

• The path to a YAML file structured in a way compatible with xclim’s build_indicator_module_from_yaml

• An indicator module directly

• A sequence of indicators

• A sequence of tuples as returned by calling iter_indicators() on an indicator module.

Same as the extraction function, since the output could have multiple frequencies, the function returns a python dictio-
nary with the output frequency as keys. The inputs of xs.compute_indicators are:

• ds is the xr.Dataset containing the required variables.

• indicators instructs on which indicator(s) to compute. It can be a number of things, as listed above.

• periods is a list of [start, end] of continuous periods to be considered.

This example will use a simple YAML file structured like this:

2.4. Examples 35

https://xclim.readthedocs.io/en/latest/notebooks/extendxclim.html?highlight=yaml#YAML-file
https://xclim.readthedocs.io/en/stable/api.html#yaml-file-structure


xscen Documentation, Release 0.7.25-beta

realm: atmos
indicators:
growing_degree_days:
base: growing_degree_days

tg_min:
base: tg_min

[ ]: ds_dict = pcat.search(processing_level="biasadjusted").to_dataset_dict()

for ds in ds_dict.values():
# Output is dict, but it has only one frequency.
_, ds_ind = xs.compute_indicators(

ds=ds,
indicators=Path().absolute() / "samples" / "indicators.yml",

).popitem()

# Save the results
filename = str(

output_folder
/ f"{ds_ind.attrs['cat:id']}.{ds_ind.attrs['cat:domain']}.{ds_ind.attrs['cat:

→˓processing_level']}.{ds_ind.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds_ind, filename, rechunk=chunks, mode="o")

# Strongly suggested to update the project catalog AFTER you save to disk, in case␣
→˓it crashes during the process

pcat.update_from_ds(ds=ds_ind, path=filename, format="zarr")

[ ]: display(ds_ind)

Spatio-temporal aggregation

Climatological operations

xs.climatological_op is used to perform n-year operations over ds.time.dt.year.

NOTE: The aggregation is over year, not over time. For example, if given monthly data, the climatological operation
will be computed separately for January, February, etc. This means that the data should already be aggregated at the
required frequency, for example using xs.compute_indicators to compute yearly, seasonal, or monthly indicators.

The function call requires a xr.Dataset and argument op specifies the operation to perform. It can be any of the
following: ['max', 'mean', 'median', 'min', 'std', 'sum', 'var', 'linregress'].

The optional arguments are as follows:

• window indicates how many year to use for the average. Uses all available years by default.

• min_period minimum number of years required for a value to be computed durring the rolling operation.

• stride indicates the stride (in years) at which to provide an output.

• periods is a list of [start, end] of continuous periods to be considered.

36 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Additional arguments allow to control the output of the function by automatically renaming variables to reflect the
operation performed, restructuring the output dataset and setting the to_level attribute.

In the following example, we will use op='mean'.

[ ]: ds_dict = pcat.search(processing_level="indicators").to_dataset_dict()

for key, ds in ds_dict.items():
ds_mean = xs.climatological_op(

ds=ds,
op="mean",
window=30,
stride=10,
rename_variables=False,
to_level="30yr-climatology",
horizons_as_dim=False,

)

# Save to zarr
filename = str(

output_folder
/ f"{ds_mean.attrs['cat:id']}.{ds_mean.attrs['cat:domain']}.{ds_mean.attrs['cat:

→˓processing_level']}.{ds_mean.attrs['cat:frequency']}.zarr"
)
xs.save_to_zarr(ds=ds_mean, filename=filename, mode="o")
pcat.update_from_ds(ds_mean, path=filename, format="zarr")

[ ]: display(ds_mean)

Horizon coordinate and time dimension

Even if no stride is called, xs.climatological_op will substantially change the nature of the time dimension,
because it now represents an aggregation over time. While no standards exist on how to reflect that in a dataset, the
following was chosen for xscen:

• time corresponds to the first timestep of each temporal average.

• horizon is a new coordinate that either follows the format YYYY-YYYY or a warming-level specific nomen-
clature.

• The cat:frequency and cat:xrfreq attributes remain unchanged.

Alternatively, setting the horizons_as_dim argument to True will rearrange the dataset with a new dimension
horizon and a dimension named according to the temporal aggregation when it is month or season, but omitting
the singleton dimension year. The time stamps are conserved in the time coordinate as an array with those new
dimensions.

[ ]: print(f"time: {ds_mean.time.values}")
print(f"horizon: {ds_mean.horizon.values}")
print(f"cat:xrfreq attribute: {ds_mean.attrs['cat:xrfreq']}")

2.4. Examples 37



xscen Documentation, Release 0.7.25-beta

Computing deltas

xs.compute_deltas is pretty self-explanatory. However, note that this function relies on the horizon coordinate
described above and, thus, is intended to be performed following some kind of temporal aggregation.

It has the following arguments:

• reference_horizon indicates which horizon to use as reference.

• kind is either “+”, “/”, or “%” for absolute, relative, or percentage deltas respectively. This argument can also
be a dictionary, with the keys corresponding to data variables.

[ ]: ds_dict = pcat.search(processing_level="30yr-climatology").to_dataset_dict()

for key, ds in ds_dict.items():
ds_delta = xs.compute_deltas(

ds=ds,
reference_horizon="1981-2010",
kind={"growing_degree_days": "%", "tg_min": "+"},
to_level="deltas",

)

# Save to zarr
filename = str(

output_folder
/ f"{ds_delta.attrs['cat:id']}.{ds_delta.attrs['cat:domain']}.{ds_delta.attrs[

→˓'cat:processing_level']}.{ds_delta.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds=ds_delta, filename=filename, rechunk=chunks, mode="o")
pcat.update_from_ds(ds_delta, path=filename, format="zarr")

[ ]: print(f"Deltas over {ds_delta.horizon.values}")
display(ds_delta.tg_min_delta_1981_2010.isel(lon=0, lat=0).values)

Spatial mean

xs.spatial_mean is used to compute the spatial average over a given region, using various methods. The argument
call_clisops can also be used to subset the domain prior to the averaging.

• method: cos-lat will perform an average operation over the spatial dimensions, accounting for changes in
grid cell area along the ‘lat’ coordinate.

• method: interp_centroid will perform an interpolation towards given coordinates or towards the centroid
of a region.

– kwargs is used to sent arguments to .interp(), including lon and lat.

– region can alternatively be used to send a gridpoint, bbox, or shapefile and compute the centroid. This
argument is a dictionary that follows the same requirements as the one for xs.extract described previ-
ously.

• method: xesmf will perform a call to xESMF’s SpatialAverager. This method is the most precise, especially
for irregular regions, but can be much slower.

– kwargs is used to sent arguments to xesmf.SpatialAverager.

38 Chapter 2. Features

https://pangeo-xesmf.readthedocs.io/en/latest/notebooks/Spatial_Averaging.html


xscen Documentation, Release 0.7.25-beta

– region is used to send a bbox or shapefile to the SpatialAverager. This argument is a dictionary that
follows the same requirements as the one for xs.extract described previously.

– simplify_tolerance is a float that can be used to change the precision (in degree) of a shapefile before
sending it to SpatialAverager.

[ ]: ds_dict = pcat.search(processing_level="deltas", domain="finer-grid").to_dataset_dict()

for key, ds in ds_dict.items():
ds_savg = xs.spatial_mean(

ds=ds,
method="interp_centroid",
kwargs={"method": "linear", "lon": -74.5, "lat": 47},
to_domain="aggregated",

)

# Save to zarr
filename = str(

output_folder
/ f"{ds_savg.attrs['cat:id']}.{ds_savg.attrs['cat:domain']}.{ds_savg.attrs['cat:

→˓processing_level']}.{ds_savg.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds=ds_savg, filename=filename, rechunk=chunks, mode="o")
pcat.update_from_ds(ds_savg, path=filename, format="zarr")

[ ]: # Aggregated deltas over the study area
display(ds_savg)

Ensemble statistics

Weights

Typically, if an ensemble is inhomogeneous (uneven number of realizations per model, mix of GCMs and RCMs,
etc.), the first step should be to call xs.generate_weights to create an adequate guess of what the weights should
be between the various datasets. Do note, however, that this function does not replace an explicit assessment of the
performance or independence of the simulations, and the results provided should be taken with a grain of salt.

The arguments are as follows:

• independence_level instruct on which weighting scheme to use and strongly influences the outputs. One of
‘model’, ‘GCM’, ‘institution’.

• experiment_weights can be used to assign a given total weight to each experiment (currently only supports
giving 1 to each experiment).

• skipna instructs on whether the weights should account for simulations with missing data.

• v_for_skipna is the variable to use in the case of skipna=False.

• standardize to make the weights sum to 1 for each instance of ‘horizon’ or ‘time’.

NOTE

2.4. Examples 39



xscen Documentation, Release 0.7.25-beta

generate_weights was built with xscen in mind, and thus relies on the cat: attributes automatically generated by
intake-esm when data is loaded from a catalog. In the case of data generated elsewhere, the required and recom-
mended attributes should minimally be added to the dataset before using this function.

[ ]: # We don't have many simulations in this example to perform ensemble statistics, but we
→˓'ll use the two SSP2-4.5 realizations
datasets = pcat.search(

processing_level="deltas", domain="aggregated", experiment="ssp245"
).to_dataset_dict()

weights = xs.generate_weights(datasets, independence_level="model")
display(weights)

Ensemble stats

xs.ensemble_stats creates an ensemble out of many datasets and computes statistics on that ensemble (min, max,
mean, percentiles, etc.) using the xclim.ensembles module. The inputs can be given in the form of a list or a
dictionary of xr.Dataset or of paths.

The arguments are as follows:

• statistics is a dictionary that instructs on which xclim.ensembles statistics to call. It follows the format
{function: arguments}.

• weights is used to weight the various datasets, if needed.

• common_attrs_only: xclim.ensembles.create_ensemble copies the attributes from the first dataset, but
this might not be representative of the new ensemble. If common_attrs_only is True, it only keeps the global
attributes that are the same for all datasets and generates a new ID.

• create_kwargs: If given a set of paths, xclim.ensembles.create_ensemble will ignore the chunking on
disk and open the datasets with only a chunking along the new realization dimension. Thus, for large datasets,
this should be used to explicitely specify chunks.

[ ]: ens_stats = xs.ensemble_stats(
datasets=datasets,
statistics={

"ensemble_percentiles": {"split": False}
}, # should be an existing function in xclim.ensembles
weights=weights,
common_attrs_only=True,

)

path = output_folder / f"ensemble_{ens_stats.attrs['cat:id']}.zarr"
xs.save_to_zarr(ens_stats, filename=path, mode="o")
pcat.update_from_ds(ds=ens_stats, path=path, format="zarr")

[ ]: display(ens_stats)

40 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Clean up

At any time, such as after bias adjustment, xs.clean_up can be called to perform a number of small modifications to
the datasets. That function can:

• convert the variables to non-CF units using xs.utils.change_units

• call the xs.utils.maybe_unstack function

• convert the calendar and interpolate over missing dates

• remove, remove everything but, and/or add a list of attributes

• change the prefix of the catalog attrs (by default: cat:)

in that order.

Calendars

During the bias adjustment step, it is frequent to convert the calendar to ‘noleap’. However, once that step has been
processed, we might want to put back all the February 29th (or other missing data in the case of ‘360_day’ calendar).
This can be done using the convert_calendar_kwargs argument of xs.clean_up, which passes a dictionary to
xclim.core.calendar.convert_calendar.

Usually, we want to linearly interpolate the missing temperatures, but put 0 mm/day for missing precipitation. If
our dataset has many variables, the missing argument (for convert_calendar) can be set for each variable with
missing_by_var. If missing_by_var is given ‘interpolate’, the missing data will be filled with NaNs, then linearly
interpolated over time.

Eg. {'tasmax':'interpolate', 'pr':[0]}

[ ]: convert_calendar_kwargs = {"target": "standard"}
missing_by_var = {"tas": "interpolate"}

Attributes

We might want to add, remove or modify the attributes.

It is possible to write a list of attributes to remove with attrs_to_remove, or a list of attributes to keep and remove ev-
erything else with remove_all_attrs_except. Both take the shape of a dictionnary where the keys are the variables
(and ‘global’ for global attrs) and the values are the list.

The element of the list can be exact matches for the attribute names or use the same regex matching rules as
intake_esm:

• ending with a ‘*’ means checks if the substring is contained in the string

• starting with a ‘^’ means check if the string starts with the substring.

Attributes can also be added to datasets using add_attrs. This is a dictionary where the keys are the variables and
the values are a another dictionary of attributes.

It is also possible to modify the catalogue prefix ‘cat:’ by a new string with change_attr_prefix. Don’t use this if
this is not the last step of your workflow.

[ ]: attrs_to_remove = {
"tas": ["name*"]

} # remove tas attrs that contain the substring 'name'
(continues on next page)

2.4. Examples 41



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

remove_all_attrs_except = {
"global": ["^cat:"]

} # remove all the global attrs EXCEPT for the one starting with cat:
add_attrs = {

"tas": {"notes": "some crucial information"}
} # add a new tas attribute named 'notes' with value 'some crucial information'
change_attr_prefix = "dataset:" # change /cat to dataset:

[ ]: ds = pcat.search(
processing_level="biasadjusted", variable="tas", experiment="ssp245", member="r1.*"

).to_dataset()

ds_clean = xs.clean_up(
ds=ds,
variables_and_units={"tas": "degC"}, # convert units
convert_calendar_kwargs=convert_calendar_kwargs,
missing_by_var=missing_by_var,
attrs_to_remove=attrs_to_remove,
remove_all_attrs_except=remove_all_attrs_except,
add_attrs=add_attrs,
change_attr_prefix=change_attr_prefix,

)

[ ]: from xclim.core.calendar import get_calendar

# Inspect calendars and the interpolated values
print("Initial calendar: ", get_calendar(ds.time))
print(ds.time.sel(time=slice("2000-02-28", "2000-03-01")).values)
print(ds.tas.sel(time=slice("2000-02-28", "2000-03-01")).isel(lat=1, lon=1).values)

print("Final calendar: ", get_calendar(ds_clean.time))
print(ds_clean.time.sel(time=slice("2000-02-28", "2000-03-01")).values)
print(

ds_clean.tas.sel(time=slice("2000-02-28", "2000-03-01")).isel(lat=1, lon=1).values
)
print("")
print("Inspect initial attributes")
display(ds)

print("")
print("Inspect final attributes")
display(ds_clean)

[ ]: from pathlib import Path

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

import xscen as xs

(continues on next page)

42 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

output_folder = Path().absolute() / "_data"

# Create a project Catalog
project = {

"title": "example-diagnostics",
"description": "This is an example catalog for xscen's documentation.",

}

pcat = xs.ProjectCatalog(
str(output_folder / "example-diagnostics.json"),
create=True,
project=project,
overwrite=True,

)

2.4.3 Diagnostics

It can be useful to perform a various diagnostic tests in order to check that the data that was produced is as expected.
Diagnostics can also help us assess bias adjustment methods.

Make sure you run GettingStarted.ipynb before this one, the GettingStarted outputs will be used a inputs in this note-
book.

[ ]: # Load catalog from the GettingStarted notebook
gettingStarted_cat = xs.ProjectCatalog(

str(output_folder / "example-gettingstarted.json")
)

Health checks

NOTE

For more information on the available cfchecks, missing, and data_flags methods, please consult the xclim doc-
umentation.

Health checks located under xscen.diagnostics.health_checks are a series of checkups that can be performed
on a Dataset to make sure that it has the expected structure, frequency, calendar, etc., with the ability to call xclim.
core.cfchecks, xclim.core.missing, and xclim.core.dataflags. The function gives full control on which
checkups should raise an Exception and which should only give a UserWarning.

The arguments are:

• structure: Dictionary with keys “dims” and “coords” containing the expected dimensions and coordinates.

• calendar: Expected calendar. Synonyms should be detected correctly (e.g. “standard” and “gregorian”).

• start_date & end_date: To check if the dataset contains those.

• variables_and_units: Dictionary containing the expected variables and units.

• cfchecks: Dictionary of xclim.core.cfchecks to perform, per variable.

• freq: Expected frequency, written as the result of xr.infer_freq(ds.time).

2.4. Examples 43

https://xclim.readthedocs.io/en/stable/checks.html
https://xclim.readthedocs.io/en/stable/checks.html


xscen Documentation, Release 0.7.25-beta

• missing: String, list of strings, or dictionary of xclim.core.missing checks to perform.

• flags: Dictionary of xclim.core.dataflags.data_flags to perform, per variable.

Additionally, flags_kwargs is used to pass additional arguments to the data_flags (“dims” and “freq”), while
return_flags can be used to return the Dataset created by xclim.core.dataflags.data_flags;

Use the argument raise_on to list to list which test should raise an error if it fails. Use [“all”] to raise on all checks.

[ ]: # load input
# 'CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r2i1p1f1_example-region' will be used for this␣
→˓example
ds = gettingStarted_cat.search(

id="CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r2i1p1f1_example-region",
processing_level="regridded",

).to_dataset()

[ ]: # The checks that we want to perform. Note that all checks are optional.
structure = {"coords": ["lat", "lon", "time"]}
calendar = "365_day" # We have a standard calendar, so we'll be warned.
start_date = "1971-01-01" # The dataset starts on 1981-01-01, so this should fail
end_date = "2045-01-01" # The dataset ends later, but we check that it contains at␣
→˓least 2045-01-01.
variables_and_units = {"tas": "degC"} # The dataset is in Kelvin, so we'll get warned.
cfchecks = {"tas": {"cfcheck_from_name": {}}}
freq = "MS" # We actually have daily data, so we should get a warning.
missing = {"missing_any": {"freq": "D"}}
flags = {"tas": {"temperature_extremely_low": {}}}

[ ]: xs.diagnostics.health_checks(
ds,
structure=structure,
calendar=calendar,
start_date=start_date,
end_date=end_date,
variables_and_units=variables_and_units,
cfchecks=cfchecks,
freq=freq,
missing=missing,
flags=flags,

)

Properties and measures

This framework for the diagnostic tests was inspired by the VALUE project. Statistical Properties is the xclim term for
‘indices’ in the VALUE project.

The xscen.properties_and_measures fonction is a wrapper for xclim.sbda.properties and xclim.sbda.measures.

• xclim.sbda.properties are statistical properties of a climate dataset. They allow for a better understanding
of the climate by collapsing the time dimension. A few examples: mean, variance, mean spell length, annual
cycle, etc.

• xclim.sbda.measures assess the difference between two datasets of properties. A few examples: bias, ratio,
circular bias, etc.

44 Chapter 2. Features

http://www.value-cost.eu/
https://xclim.readthedocs.io/en/stable/api.html#properties-submodule
https://xclim.readthedocs.io/en/stable/api.html#measures-submodule


xscen Documentation, Release 0.7.25-beta

Let’s start by calculating the properties on the reference dataset. You have to provide the path to a YAML file
properties describing the properties you want to compute. You can also specify a period to select and a unit conver-
sion to apply before computing the properties.

This example will use a YAML file structured like this:

realm: generic
indicators:
quantile_98_tas:
base: xclim.sdba.properties.quantile
cf_attrs:
long_name: 98th quantile of the mean temperature

input:
da: tas

parameters:
q: 0.98
group: time.season

maximum_length_of_warm_spell:
base: xclim.sdba.properties.spell_length_distribution
cf_attrs:
long_name: Maximum spell length distribution when the mean temperature is larger␣

→˓or equal to the 90th quantile.
input:
da: tas

parameters:
method: quantile
op: '>='
thresh: 0.9
stat: max

mean-tas:
base: xclim.sdba.properties.mean
cf_attrs:
long_name: Ratio of the mean temperature

input:
da: tas

measure: xclim.sdba.measures.BIAS

[ ]: properties = "samples/properties.yml"
period = [1981, 2010]
change_units_arg = {"tas": "degC"}

The properties can be given an argument group (‘time’, ‘time.season’ or ‘time.month’). For ‘time’, the time collapsing
will be performed over the whole period. For ‘time.season’/’time.month’, the time collapsing will be performed over
each season/month. See quantile_98_tas as an example for season.

[ ]: # load input
dref = gettingStarted_cat.search(source="ERA5-Land").to_dataset()

# calculate properties and measures
prop_ref, _ = xs.properties_and_measures(

ds=dref,
properties=properties,
period=period,
change_units_arg=change_units_arg,

(continues on next page)

2.4. Examples 45



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

to_level_prop="diag-properties-ref",
)

# save and update catalog
filename = str(

output_folder
/ f"{prop_ref.attrs['cat:id']}.{prop_ref.attrs['cat:domain']}.{prop_ref.attrs['cat:

→˓processing_level']}.zarr"
)
xs.save_to_zarr(ds=prop_ref, filename=filename, mode="o")
pcat.update_from_ds(ds=prop_ref, path=filename, format="zarr")
prop_ref

To compute a measure as well as a property, add the dref_for_measure argument with the reference properties
calculated above. This will mesure the difference between the reference properties and the scenario properties. A
default measure is associated with each properties, but it is possible to define a new one in the YAML (see mean-tas
for example where the default (bias) was changed for ratio.)

[ ]: # load input
dscen = gettingStarted_cat.search(

source="NorESM2-MM",
experiment="ssp245",
member="r1.*",
processing_level="biasadjusted",

).to_dataset()

# calculate properties and measures
prop_scen, meas_scen = xs.properties_and_measures(

ds=dscen,
properties=properties,
period=period,
dref_for_measure=prop_ref,
change_units_arg={"tas": "degC"},
to_level_prop="diag-properties-scen",
to_level_meas="diag-measures-scen",

)

display(prop_scen)
display(meas_scen)

# save and update catalog
for ds in [prop_scen, meas_scen]:

filename = str(
output_folder
/ f"{ds.attrs['cat:id']}.{ds.attrs['cat:domain']}.{ds.attrs['cat:processing_level

→˓']}.zarr"
)
xs.save_to_zarr(ds=ds, filename=filename, mode="o")
pcat.update_from_ds(ds=ds, path=filename, format="zarr")

[ ]: var = "mean-tas"
(continues on next page)

46 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

# plot
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
prop_ref[var].transpose("lat", ...).plot(ax=axs[0], cmap="plasma", vmin=3, vmax=6)
prop_scen[var].transpose("lat", ...).plot(ax=axs[1], cmap="plasma", vmin=3, vmax=6)
meas_scen[var].transpose("lat", ...).plot(ax=axs[2], cmap="RdBu_r", vmin=-3, vmax=3)
axs[0].set_title("Reference")
axs[1].set_title("Scenario")
axs[2].set_title("Bias between Reference and Scenario")
fig.tight_layout()

If you have different methods of bias adjustement, you might want to compare them and see for each property which
method performs best (bias close to 0, ratio close to 1) with a measures_heatmap.

Below is an example comparing properties of a simulation (no bias adjustment) and a scenario (with quantile mapping
bias adjustment). Both the simulation and the scenario use the same reference for the measures.

Note that it is possible to add many rows to measures_heatmap.

NOTE

The bias correction performed in the Getting Started tutorial was adjusted for speed rather than performance, using
only a few quantiles. The performance results below are thus quite poor, but that was expected.

[ ]: # repeat the step above for the simulation (no bias adjustment)
dsim = gettingStarted_cat.search(

source="NorESM2-MM",
experiment="ssp245",
member="r1.*",
processing_level="regridded",

).to_dataset()
prop_sim, meas_sim = xs.properties_and_measures(

ds=dsim,
properties=properties,
period=period,
dref_for_measure=prop_ref,
change_units_arg=change_units_arg,
to_level_prop="diag-properties-sim",
to_level_meas="diag-measures-sim",

)

# save and update catalog
for ds in [prop_sim, meas_sim]:

filename = str(
output_folder
/ f"{ds.attrs['cat:id']}.{ds.attrs['cat:domain']}.{ds.attrs['cat:processing_level

→˓']}.zarr"
)
xs.save_to_zarr(ds=ds, filename=filename, mode="o")
pcat.update_from_ds(ds=ds, path=filename, format="zarr")

2.4. Examples 47



xscen Documentation, Release 0.7.25-beta

[ ]: # load the measures for both kinds of data (sim and scen)
meas_datasets = pcat.search(

processing_level=["diag-measures-sim", "diag-measures-scen"]
).to_dataset_dict()

[ ]: from matplotlib import colors

# calculate the heatmap
hm = xs.diagnostics.measures_heatmap(meas_datasets=meas_datasets)

# plot the heat map
fig_hmap, ax = plt.subplots(figsize=(10, 2))
cmap = plt.cm.RdYlGn_r
norm = colors.BoundaryNorm(np.linspace(0, 1, 4), cmap.N)
im = ax.imshow(hm.heatmap.values, cmap=cmap, norm=norm)
ax.set_xticks(ticks=np.arange(3), labels=hm.properties.values, rotation=45, ha="right")
ax.set_yticks(ticks=np.arange(2), labels=hm.realization.values)
divider = make_axes_locatable(ax)
cax = divider.new_vertical(size="15%", pad=0.4)
fig_hmap.add_axes(cax)
cbar = fig_hmap.colorbar(im, cax=cax, ticks=[0, 1], orientation="horizontal")
cbar.ax.set_xticklabels(["best", "worst"])
plt.title("Normalised mean measure of properties")
fig_hmap.tight_layout()

measure_improved is another way to compare two datasets. It returns the fraction of the grid points that performed
better in the second dataset than in the first dataset. It is useful to see which of properties are best corrected for by the
bias adjustement method.

[ ]: # change the order of meas_dataset to have sim first, because we want to see how scen␣
→˓improved compared to sim.
ordered_keys = [

"CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region.finer-grid.diag-
→˓measures-sim.fx",

"CMIP6_ScenarioMIP_NCC_NorESM2-MM_ssp245_r1i1p1f1_example-region.finer-grid.diag-
→˓measures-scen.fx",
]
meas_datasets = {k: meas_datasets[k] for k in ordered_keys}

pb = xs.diagnostics.measures_improvement(meas_datasets=meas_datasets)

# plot
percent_better = pb.improved_grid_points.values
percent_better = np.reshape(np.array(percent_better), (1, 3))
fig_per, ax = plt.subplots(figsize=(10, 2))
cmap = plt.cm.RdYlGn
norm = colors.BoundaryNorm(np.linspace(0, 1, 100), cmap.N)
im = ax.imshow(percent_better, cmap=cmap, norm=norm)
ax.set_xticks(ticks=np.arange(3), labels=pb.properties.values, rotation=45, ha="right")
ax.set_yticks(ticks=np.arange(1), labels=[""])

divider = make_axes_locatable(ax)
cax = divider.new_vertical(size="15%", pad=0.4)

(continues on next page)

48 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

fig_per.add_axes(cax)
cbar = fig_per.colorbar(

im, cax=cax, ticks=np.arange(0, 1.1, 0.1), orientation="horizontal"
)
plt.title(

"Fraction of grid cells of scen that improved or stayed the same compared to sim"
)
fig_per.tight_layout()

2.4.4 Ensembles

Ensemble reduction

This tutorial will explore ensemble reduction (also known as ensemble selection) using xscen. This will use pre-
computed annual mean temperatures from xclim.testing.

[ ]: from xclim.testing import open_dataset

import xscen as xs

datasets = {
"ACCESS": "EnsembleStats/BCCAQv2+ANUSPLIN300_ACCESS1-0_historical+rcp45_r1i1p1_1950-

→˓2100_tg_mean_YS.nc",
"BNU-ESM": "EnsembleStats/BCCAQv2+ANUSPLIN300_BNU-ESM_historical+rcp45_r1i1p1_1950-

→˓2100_tg_mean_YS.nc",
"CCSM4-r1": "EnsembleStats/BCCAQv2+ANUSPLIN300_CCSM4_historical+rcp45_r1i1p1_1950-

→˓2100_tg_mean_YS.nc",
"CCSM4-r2": "EnsembleStats/BCCAQv2+ANUSPLIN300_CCSM4_historical+rcp45_r2i1p1_1950-

→˓2100_tg_mean_YS.nc",
"CNRM-CM5": "EnsembleStats/BCCAQv2+ANUSPLIN300_CNRM-CM5_historical+rcp45_r1i1p1_1970-

→˓2050_tg_mean_YS.nc",
}

for d in datasets:
ds = open_dataset(datasets[d]).isel(lon=slice(0, 4), lat=slice(0, 4))
ds = xs.climatological_mean(ds, window=30, periods=[[1981, 2010], [2021, 2050]])
datasets[d] = xs.compute_deltas(ds, reference_horizon="1981-2010")
datasets[d].attrs["cat:id"] = d # Required by build_reduction_data
datasets[d].attrs["cat:xrfreq"] = "AS-JAN"

Preparing the data

Ensemble reduction is built upon climate indicators that are relevant to represent the ensemble’s variability for a given
application. In this case, we’ll use the mean temperature delta between 2021-2050 and 1981-2010.

However, the functions implemented in xclim.ensembles._reduce require a very specific 2-D DataArray of di-
mensions “realization” and “criteria”. That means that all the variables need to be combined and renamed, and that all
dimensions need to be stacked together.

xs.build_reduction_data can be used to prepare the data for ensemble reduction. Its arguments are:

2.4. Examples 49



xscen Documentation, Release 0.7.25-beta

• datasets (dict, list)

• xrfreqs are the unique frequencies of the indicators.

• horizons is used to instruct on which horizon(s) to build the data from.

Because a simulation could have multiple datasets (in the case of multiple frequencies), an attempt will be made to
decipher the ID and frequency from the metadata.

[ ]: data = xs.build_reduction_data(
datasets=datasets,
xrfreqs=["AS-JAN"],
horizons=["2021-2050"],

)

data

The number of criteria corresponds to: indicators x horizons x longitude x latitude, but criteria that are
purely NaN across all realizations are removed.

Note that xs.spatial_mean could have been used prior to calling that function to remove the spatial dimensions.

Selecting a reduced ensemble

NOTE

Ensemble reduction in xscen is built upon xclim.ensembles. For more information on basic usage and available
methods, please consult their documentation.

Ensemble reduction through xscen.reduce_ensemble consists in a simple call to xclim. The arguments are: - data,
which is the 2D DataArray that is created by using xs.build_reduction_data. - method is either kkz or kmeans.
See the link above for further details on each technique. - kwargs is a dictionary of arguments to send to the method
chosen.

[ ]: selected, clusters, fig_data = xs.reduce_ensemble(
data=data, method="kmeans", kwargs={"method": {"n_clusters": 3}}

)

The method always returns 3 outputs (selected, clusters, fig_data): - selected is a DataArray of dimension ‘realization’
listing the selected simulations. - clusters (kmeans only) groups every realization in their respective clusters in a
python dictionary. - fig_data (kmeans only) can be used to call xclim.ensembles.plot_rsqprofile(fig_data)

[ ]: selected

[ ]: # To see the clusters in more details
clusters

[ ]: from xclim.ensembles import plot_rsqprofile

plot_rsqprofile(fig_data)

50 Chapter 2. Features

https://xclim.readthedocs.io/en/stable/notebooks/ensembles-advanced.html


xscen Documentation, Release 0.7.25-beta

Ensemble partition

This tutorial will show how to use xscen to create the input for xclim partition functions.

[ ]: # Get catalog
from pathlib import Path

output_folder = Path().absolute() / "_data"
cat = xs.DataCatalog(str(output_folder / "tutorial-catalog.json"))

# create a dictionnary of datasets wanted for the partition
input_dict = cat.search(variable="tas", member="r1i1p1f1").to_dataset_dict(

xarray_open_kwargs={"engine": "h5netcdf"}
)

From a dictionary of datasets, the function creates a dataset with new dimensions in partition_dim(["source",
"experiment", "bias_adjust_project"], if they exist). In this toy example, we only have different experiments.
- By default, it translates the xscen vocabulary (eg. experiment) to the xclim partition vocabulary (eg. scenario).
It is possible to pass rename_dict to rename the dimensions with other names. - If the inputs are not on the same
grid, they can be regridded through regrid_kw or subset to a point through subset_kw. The functions assumes that
if there are different bias_adjust_project, they will be on different grids (with all source on the same grid). If
there is one or less bias_adjust_project, the assumption is thatsource have different grids.

[ ]: # build a single dataset
ds = xs.ensembles.build_partition_data(

input_dict, subset_kw=dict(name="mtl", method="gridpoint", lat=[45.5], lon=[-73.6])
)
ds

Pass the input to an xclim partition function.

[ ]: import xclim as xc

# get a yearly dataset
da = xc.atmos.tg_mean(ds=ds)

# compute uncertainty partitionning
mean, uncertainties = xc.ensembles.hawkins_sutton(da)
uncertainties

NOTE

Note that the figanos library provides a function fg.partition to plot the uncertainties.

[ ]:

2.4. Examples 51

https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning
https://figanos.readthedocs.io/en/latest/


xscen Documentation, Release 0.7.25-beta

2.4.5 Warming levels

This Notebook explores the options provided in xscen to analyze climate simulations through the scope of global
warming levels, instead of temporal horizons.

First, we just need to prepare some data. We’ll use NorESM2-MM as our example dataset.

[ ]: # Basic imports
from pathlib import Path

import xarray as xr
import xesmf as xe
from matplotlib import pyplot as plt

import xscen as xs
from xscen.testing import datablock_3d, fake_data

# Prepare a Projectcatalog for this Tutorial.
output_folder = Path().absolute() / "_data"
project = {

"title": "example-warminglevel",
"description": "This is an example catalog for xscen's documentation.",

}
pcat = xs.ProjectCatalog(

str(output_folder / "example-wl.json"),
project=project,
create=True,
overwrite=True,

)

# Extract the data needed for the Tutorial
cat_sim = xs.search_data_catalogs(

data_catalogs=[str(output_folder / "tutorial-catalog.json")],
variables_and_freqs={"tas": "D"},
other_search_criteria={"source": "NorESM2-MM", "activity": "ScenarioMIP"},

)
region = {

"name": "example-region",
"method": "bbox",
"tile_buffer": 1.5,
"lon_bnds": [-75, -74],
"lat_bnds": [45, 46],

}

for ds_id, dc in cat_sim.items():
ds = xs.extract_dataset(

catalog=dc,
region=region,
xr_open_kwargs={"drop_variables": ["height", "time_bnds"]},

)["D"]
# Since the sample files are very small, we'll create fake data covering a longer␣

→˓time period
data = fake_data(

nyears=121,
(continues on next page)

52 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

ny=len(ds.lat),
nx=len(ds.lon),
rand_type="tas",
seed=list(cat_sim.keys()).index(ds_id),
amplitude=15,
offset=2,

)
attrs = ds.attrs
ds = datablock_3d(

data,
"tas",
"lon",
-75,
"lat",
45,
x_step=1,
y_step=1.5,
start="1/1/1981",
freq="D",
as_dataset=True,

)
ds.attrs = attrs

filename = str(
output_folder
/ f"wl_{ds.attrs['cat:id']}.{ds.attrs['cat:domain']}.{ds.attrs['cat:processing_

→˓level']}.{ds.attrs['cat:frequency']}.zarr"
)
chunks = xs.io.estimate_chunks(ds, dims=["time"], target_mb=50)
xs.save_to_zarr(ds, filename, rechunk=chunks, mode="o")
pcat.update_from_ds(ds=ds, path=filename, info_dict={"format": "zarr"})

Find warming levels with only the model name

If all that you want to know is the year or the period during which a climate model reaches a given warming level, then
xs.get_warming_level is the function to use since you can simply give it a string or a list of strings and receive that
information.

The usual arguments of xs.get_warming_level are:

• realization: Dataset, dict or string.

– Strings should follow the format ‘mip-era_source_experiment_member’. Those fields should be found in
the dict or in the attributes of the dataset (allowing for a possible ‘cat:’ prefix).

– In all cases, regex is allowed to relax the name matching.

– The “source” part can also be a driving_model name. If a Dataset is passed and it’s driving_model
attribute is non-null, it is used.

• wl: warming level.

• window: Number of years in the centered window during which the warming level is reached. Note that in the
case of an even number, the IPCC standard is used (-n/2+1, +n/2).

2.4. Examples 53



xscen Documentation, Release 0.7.25-beta

• tas_baseline_period: The period over which the warming level is calculated, equivalent to “+0°C”. Defaults
to 1850-1900.

• ignore_member: The default tas_src only contains data for 1 member. If you want a result regardless of the
realization number, set this to True.

• return_horizon: Whether to return the start/end of the horizon or to return the middle year.

It returns either a string or ['start_yr', 'end_yr'], depending on return_horizon. For entries that it fails to
find in the database, or for instances where a given warming level is not reached, the function returns None (or [None,
None]).

If realization is a list of the accepted types, or a DataArray or a DataFrame, the function returns a sequence of the
same size (and with the same index, if relevant). It can happen that a requested model’s name was not found exactly in
the database, but that arguments allowed for a relaxed search (ignore_member = True or regex in realization).
In that case, the selected model doesn’t have the same name as the requested one and this information is only shown in
the log, unless one passes output='selected' to receive a dictionary instead where the keys are the selected models
in the database.

[ ]: # Multiple entries, returns a list of the same length
print(

xs.get_warming_level(
[

"CMIP6_CanESM5_ssp126_r1i1p1f1",
"CMIP6_CanESM5_ssp245_r1i1p1f1",
"CMIP6_CanESM5_ssp370_r1i1p1f1",
"CMIP6_CanESM5_ssp585_r1i1p1f1",

],
wl=2,
window=20,

)
)
# Returns a list
print(

xs.get_warming_level(
"CMIP6_CanESM5_ssp585_r1i1p1f1", wl=2, window=20, return_horizon=True

)
)
# Only the middle year is requested, returns a string
print(

xs.get_warming_level(
"CMIP6_CanESM5_ssp585_r1i1p1f1", wl=2, window=20, return_horizon=False

)
)
# +10°C is never reached, returns None
print(xs.get_warming_level("CMIP6_CanESM5_ssp585_r1i1p1f1", wl=10, window=20))

54 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Find and extract data by warming levels

If you instead need to subset and analyze data, then two options are currently provided in xscen:
subset_warming_level and produce_horizon. - Use subset_warming_level when you want to cut a dataset
for a period corresponding to a given warming level, but leave its frequency untouched. - Use produce_horizon
when you need to: subset a time period, compute indicators, and compute the climatological mean for one or multiple
horizons.

The two methods are detailed in the following section.

Method #1: Subsetting datasets by warming level

xs.subset_warming_level can be used to subset a dataset for a window over which a given global warming level
is reached. A new dimension named warminglevel is created by the function.

The function calls get_warming_level, so the arguments are essentially the same.:

• ds: input dataset.

• wl: warming level.

• window: Number of years in the centered window during which the warming level is reached. Note that in the
case of an even number, the IPCC standard is used (-n/2+1, +n/2).

• tas_baseline_period: The period over which the warming level is calculated, equivalent to “+0°C”. Defaults
to 1850-1900.

• ignore_member: The default database only contains data for 1 member. If you want a result regardless of the
realization number, set this to True.

• to_level: Contrary to other methods, you can use “{wl}”, “{period0}” and “{period1}” in the string to dy-
namically include wl, ‘tas_baseline_period[0]’ and ‘tas_baseline_period[1]’ in the processing_level.

• wl_dim: The string used to fill the new warminglevel dimension. You can use “{wl}”, “{period0}” and “{pe-
riod1}” in the string to dynamically include wl, tas_baseline_period[0] and tas_baseline_period[1].
Or you can use True to have a float coordinate with units of °C. If None, no new dimension will be added.

If the source, experiment, (member), and warming level are not found in the database. The function returns None.

[ ]: ds = pcat.search(
processing_level="extracted",
experiment="ssp245",
member="r1.*",
source="NorESM2-MM",
frequency="day",

).to_dataset()

xs.subset_warming_level(
ds,
wl=2,
window=20,

)

2.4. Examples 55



xscen Documentation, Release 0.7.25-beta

Vectorized subsetting

The function can also vectorize the subsetting over multiple warming levels or over a properly constructed “realization”
dimension. In that case, the original time axis can’t be preserved. It is replaced by a fake one starting in 1000. However,
as this process is a bit complex, the current xscen version only supports this if the data is annual. As the time axis
doesn’t carry any information, a warminglevel_bounds coordinate is added with the time bounds of the subsetting.
If a warming level was not reached, a NaN slice is inserted in the output dataset.

This option is to be used when “scalar” subsetting is not enough, but you want to do things differently than
produce_horizons.

Here, we’ll open all experiments into a single ensemble dataset where the realization dimension is constructed
exactly as get_warming_level expects it to be. We’ll also average the daily data to an annual scale.

[ ]: ds = pcat.search(
processing_level="extracted",
member="r1.*",
frequency="day",

).to_dataset(
# Value of the "realization" dimension will be constructed by concatenaing those␣

→˓fields with a '_'
create_ensemble_on=["mip_era", "source", "experiment", "member"]

)
ds = ds.resample(time="YS").mean()
ds

[ ]: xs.subset_warming_level(ds, wl=[1.5, 2, 3], wl_dim=True, to_level="warming-level")

Method #2: Producing horizons

If what you need is to compute indicators and their climatological mean, xs.aggregate.produce_horizon is a
more convenient function to work with than subset_warming_level. Since the years are meaningless for warming
levels, and are even detrimental to making ensemble statistics, the function formats the output as to remove the ‘time’
and ‘year’ information from the dataset, while the seasons/months are unstacked to different coordinates. Hence, the
single dataset outputed can contain indicators of different frequencies, as well as multiple warming levels or temporal
horizons.

The arguments of xs.aggregate.produce_horizon are:

• ds: input dataset.

• indicators: As in compute_indicators

• periods: Periods to cut.

• warminglevels: Dictionary of arguments to pass to subset_warming_level. If ‘wl’ is a list, the function
will be called for each value and produce multiple horizons.

If both periods and warminglevels are None, the full time series will be used. If a dataset does not contain a given
period or warming level, then that specific period will be skipped.

[ ]: dict_input = pcat.search(processing_level="extracted", xrfreq="D").to_dataset_dict(
xarray_open_kwargs={"decode_timedelta": False}

)

(continues on next page)

56 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

for id_input, ds_input in dict_input.items():
# 1981-2010 will be used as our reference period. We can compute it at the same time.
ds_hor = xs.produce_horizon(

ds_input,
indicators="samples/indicators.yml",
periods=[["1981", "2010"]],
warminglevels={"wl": [1, 1.5, 2], "window": 30, "ignore_member": True},
to_level="horizons",

)

# Save
filename = str(

output_folder
/ f"wl_{ds_hor.attrs['cat:id']}.{ds_hor.attrs['cat:domain']}.{ds_hor.attrs['cat:

→˓processing_level']}.{ds_hor.attrs['cat:frequency']}.zarr"
)
xs.save_to_zarr(ds_hor, filename, mode="o")
pcat.update_from_ds(ds=ds_hor, path=filename, info_dict={"format": "zarr"})

[ ]: display(ds_hor)

Deltas and spatial aggregation

This step is done as in the Getting Started Notebook. Here we will spatially aggregate the data, but the datasets could
also be regridded to a common grid.

[ ]: dict_wl = pcat.search(processing_level="horizons").to_dataset_dict(
xarray_open_kwargs={"decode_timedelta": False}

)

for id_wl, ds_wl in dict_wl.items():
# compute delta
ds_delta = xs.aggregate.compute_deltas(

ds=ds_wl, reference_horizon="1981-2010", to_level="deltas"
)

# remove the reference period from the dataset
ds_delta = ds_delta.sel(horizon=~ds_delta.horizon.isin(["1981-2010"]))

# aggregate
ds_delta["lon"].attrs["axis"] = "X"
ds_delta["lat"].attrs["axis"] = "Y"
ds_agg = xs.spatial_mean(

ds_delta,
method="cos-lat",
to_level="deltas-agg",

)

# Save
filename = str(

output_folder
(continues on next page)

2.4. Examples 57



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

/ f"wl_{ds_agg.attrs['cat:id']}.{ds_agg.attrs['cat:domain']}.{ds_agg.attrs['cat:
→˓processing_level']}.{ds_agg.attrs['cat:frequency']}.zarr"

)
xs.save_to_zarr(ds_agg, filename, mode="o")
pcat.update_from_ds(ds=ds_agg, path=filename, info_dict={"format": "zarr"})

[ ]: display(ds_agg)

Ensemble statistics

Even more than with time-based horizons, the first step of ensemble statistics should be to generate the weights. Indeed,
if a model has 3 experiments reaching a given warming level, we want it to have the same weight as a model with only 2
experiments reaching that warming level. The argument skipna=False should be passed to xs.generate_weights
to properly assess which simulations reaches which warming level. If the horizon dimension differs between datasets
(as is the case here), they are reindexed and given a weight of 0.

When working with warming levels, how to assess experiments is more open-ended. The IPCC Atlas splits the statistics
and climate change signals by SSPs, even when they are being analyzed through warming levels, but experiments could
also be considered as ‘members’ of a given model and used to bolster the number of realizations.

[ ]: datasets = pcat.search(processing_level="deltas-agg").to_dataset_dict()

[ ]: # All realisations of NorESM2-MM are given the same weight for the first horizon, while␣
→˓it correctly recognizes that +1.5°C and +2°C weren't reached for the SSP126.
weights = xs.ensembles.generate_weights(

datasets=datasets, independence_level="model", skipna=False
)
display(weights)

Next, the weights and the datasets can be passed to xs.ensemble_stats to calculate the ensemble statistics.

[ ]: ds_ens = xs.ensemble_stats(
datasets=datasets,
common_attrs_only=True,
weights=weights,
statistics={"ensemble_mean_std_max_min": None},
to_level=f"ensemble-deltas-wl",

)

# It is sometimes useful to keep track of how many realisations made the ensemble.
ds_ens.horizon.attrs["ensemble_size"] = len(datasets)

filename = str(
output_folder
/ f"wl_{ds_ens.attrs['cat:id']}.{ds_ens.attrs['cat:domain']}.{ds_ens.attrs['cat:

→˓processing_level']}.{ds_ens.attrs['cat:frequency']}.zarr"
)
xs.save_to_zarr(ds_ens, filename, mode="o")
pcat.update_from_ds(ds=ds_ens, path=filename, info_dict={"format": "zarr"})

58 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

[ ]: display(ds_ens)

2.4.6 YAML usage

NOTE

This tutorial will mostly remain xscen-specific and, thus, will not go into more advanced YAML functionalities such
as anchors. More information on that can be consulted here, while this template makes ample use of them.

While parameters can be explicitely given to functions, most support the use of YAML configuration files to automat-
ically pass arguments. This tutorial will go over basic principles on how to write and prepare configuration files, and
provide a few examples.

An xscen function supports YAML parametrisation if it is preceded by the parse_config wrapper in the code.
Currently supported functions are:

[ ]: from xscen.config import get_configurable

list(get_configurable().keys())

Loading an existing YAML config file

YAML files are read using xscen.load_config. Any number of files can be called, which will be merged together
into a single python dictionary accessed through xscen.CONFIG.

[ ]: from pathlib import Path

import xscen as xs
from xscen import CONFIG

[ ]: # Load configuration
xs.load_config(

str(
Path().absolute().parent.parent
/ "templates"
/ "1-basic_workflow_with_config"
/ "config1.yml"

),
# str(Path().absolute().parent.parent / "templates" / "1-basic_workflow_with_config"␣

→˓/ "paths1_example.yml") We can't actually load this file due to the fake paths, but␣
→˓this would be the format
)

# Display the dictionary keys
print(CONFIG.keys())

xscen.CONFIG behaves similarly to a python dictionary, but has a custom __getitem__ that returns a deepcopy of
the requested item. As such, it is unmutable and thus, reliable and robust.

2.4. Examples 59

https://support.atlassian.com/bitbucket-cloud/docs/yaml-anchors/
https://github.com/Ouranosinc/xscen/blob/main/templates/1-basic_workflow_with_config/config1.yml


xscen Documentation, Release 0.7.25-beta

[ ]: # A normal python dictionary is mutable, but a CONFIG dictionary is not.
pydict = dict(CONFIG["project"])
print(CONFIG["project"]["id"], ", ", pydict["id"])
pydict2 = pydict
pydict2["id"] = "modified id"
print(CONFIG["project"]["id"], ", ", pydict["id"], ", ", pydict2["id"])
pydict3 = pydict2
pydict3["id"] = "even more modified id"
print(

CONFIG["project"]["id"],
", ",
pydict["id"],
", ",
pydict2["id"],
", ",
pydict3["id"],

)

If one really want to modify the CONFIG dictionary from within the workflow itself, its set method must be used.

[ ]: CONFIG.set("project.id", "modified id")
print(CONFIG["project"]["id"])

Building a YAML config file

Generic arguments

Since CONFIG is a python dictionary, anything can be written in it if it is deemed useful for the execution of the script.
A good practice, such as seen in this template’s config1.yml, is for example to use the YAML file to provide a list of
tasks to be accomplished, give the general description of the project, or provide a dask configuration:

[ ]: print(CONFIG["tasks"])
print(CONFIG["project"])
print(CONFIG["regrid"]["dask"])

These are not linked to any function and will not automatically be called upon by xscen, but can be referred to during
the execution of the script. Below is an example where tasks is used to instruct on which tasks to accomplish and
which to skip. Many such example can be seen throughout the provided templates.

[ ]: if "extract" in CONFIG["tasks"]:
print("This will start the extraction process.")

if "figures" in CONFIG["tasks"]:
print(

"This would start creating figures, but it will be skipped since it is not in␣
→˓the list of tasks."

)

60 Chapter 2. Features

https://github.com/Ouranosinc/xscen/tree/main/templates/1-basic_workflow_with_config/config1.yml
https://github.com/Ouranosinc/xscen/tree/main/templates


xscen Documentation, Release 0.7.25-beta

Function-specific parameters

In addition to generic arguments, a major convenience of YAML files is that parameters can be automatically fed to
functions if they are wrapped by @parse_config (see above for the list of currently supported functions). The exact
following format has to be used:

module:
function:

argument:

The most up-to-date list of modules can be consulted here, as well as at the start of this tutorial. A simple example
would be as follows:

aggregate:
compute_deltas:
kind: "+"
reference_horizon: "1991-2020"
to_level: 'delta'

Some functions have arguments in the form of lists and dictionaries. These are also supported:

extract:
search_data_catalogs:
variables_and_freqs:
tasmax: D
tasmin: D
pr: D
dtr: D

allow_resampling: False
allow_conversion: True
periods: ['1991', '2020']
other_search_criteria:
source:
"ERA5-Land"

[ ]: # Note that the YAML used here is more complex and separates tasks between 'reconstruction
→˓' and 'simulation', which would break the automatic passing of arguments.
print(

CONFIG["extract"]["reconstruction"]["search_data_catalogs"]["variables_and_freqs"]
) # Dictionary
print(CONFIG["extract"]["reconstruction"]["search_data_catalogs"]["periods"]) # List

Let’s test that it is working, using climatological_op:

[ ]: # We should obtain 30-year means separated in 10-year intervals.
CONFIG["aggregate"]["climatological_op"]

[ ]: import pandas as pd
import xarray as xr

# Create a dummy dataset
time = pd.date_range("1951-01-01", "2100-01-01", freq="AS-JAN")
da = xr.DataArray([0] * len(time), coords={"time": time})

(continues on next page)

2.4. Examples 61

https://xscen.readthedocs.io/en/latest/apidoc/modules.html


xscen Documentation, Release 0.7.25-beta

(continued from previous page)

da.name = "test"
ds = da.to_dataset()

# Call climatological_op using no argument other than what's in CONFIG
print(xs.climatological_op(ds))

Managing paths

As a final note, it should be said that YAML files are a good way to privately provide paths to a script without having
to explicitely write them in the code. An example is provided here. As stated earlier, xs.load_config will merge
together the provided YAML files into a single dictionary, meaning that the separation will be seamless once the script
is running.

As an added protection, if the script is to be hosted on Github, paths.yml (or whatever it is being called) can then be
added to the .gitignore.

Configuration of external packages

As explained in the load_config documentation, a few top-level sections can be used to configure packages external
to xscen. For example, everything under the logging section will be sent to logging.config.dictConfig(...
), allowing the full configuration of python’s built-in logging mechanism. The current config does exactly that by
configuring a logger for xscen that logs to the console, with a sensibility set to the INFO level and a specified record
formating :

[ ]: CONFIG["logging"]

Passing configuration through the command line

In order to have a more flexible configuration, it can be interesting to modify it using the command line. This way, the
workflow can be started with different values without having to edit and save the YAML file each time. Alternatively,
the command line arguments can also be used to determine which configuration file to use, so that the same workflow
can be launched with different configurations without needing to duplicate the code. The second template workflow
uses this method.

The idea is simply to create an ArgumentParser with python’s built-in argparse :

[ ]: from argparse import ArgumentParser

parser = ArgumentParser(description="An example CLI arguments parser.")
parser.add_argument("-c", "--conf", action="append")

# Let's simulate command line arguments
example_args = (

"-c ../../templates/2-indicators_only/config2.yml "
'-c project.title="Title" '
"--conf project.id=newID"

)

args = parser.parse_args(example_args.split())
print(args.conf)

62 Chapter 2. Features

https://github.com/Ouranosinc/xscen/blob/main/templates/1-basic_workflow_with_config/paths1_example.yml
https://xscen.readthedocs.io/en/latest/api.html#special-sections
https://docs.python.org/3/library/logging.config.html#configuration-dictionary-schema
https://github.com/Ouranosinc/xscen/blob/main/templates/2-indicators_only/workflow2.py
https://docs.python.org/3/library/argparse.html


xscen Documentation, Release 0.7.25-beta

And then we can simply pass this list to load_config, which accepts file paths and “key=value” pairs.

[ ]: xs.load_config(*args.conf)

print(CONFIG["project"]["title"])
print(CONFIG["project"]["id"])

2.5 Columns

This section presents a definition and examples for each column of a xscen DataCatalog. The entries for the columns
are based on CMIP6 metadata and the ES-DOC controlled vocabulary (https://github.com/ES-DOC/pyessv-archive).
Some columns might be left empty (with a NaN), but id, domain, processing_level and xrfreq are mandatory.
These four columns are what xscen uses by default to guess which entries can be merged together : all entries with the
same unique combination of the four columns will be combined in a single Dataset when any of the first three functions
listed here are used.

• id: Unique Dataset ID generated by xscen based on a subset of columns. By default, it is based on
xscen.catalog.ID_COLUMNS.

– E.g. “ERA_ecmwf_ERA5_ERA5-Land_NAM”, “CMIP6_ScenarioMIP_CMCC_CMCC-
ESM2_ssp245_r1i1p1f1_global”

• type: Type of data.

– E.g. “forecast”, “station-obs”, “gridded-obs”, “reconstruction”, “simulation”

• processing_level: Level of post-processing reached.

– E.g. “raw”, “extracted”, “regridded”, “biasadjusted”

• bias_adjust_institution: Institution that computed the bias adjustment.

– E.g. “Ouranos”, “PCIC”

• bias_adjust_project: Name of the project that computed the bias adjustment.

– E.g. “ESPO-R5”, “BCCAQv2”

• mip_era: CMIP generation associated with the data.

– E.g. “CMIP6”, “CMIP5”

• activity: Model Intercomparison Project (MIP) associated with the data. This is the same as activity_id
in CMIP6 data. CMIP is the activity for the historical experiment and the DECK experiments.

– E.g. “CMIP”, “CORDEX”, “HighResMIP”

• driving_model: Name of the driver. Following the driving_model convention from ES-DOC, this is in
the format “institution-model”.

– E.g. “CCCma-CanESM2”

• institution: Institution associated with the source.

– E.g. “CCCma”, “Ouranos”, “ECMWF”

• source: For simulation type, this is the model. For GCMs, this is the name of the model (source_id in
CMIP6 and rcm_name in ES-DOC for CORDEX). For reconstruction type, this is the name of the
dataset.

– E.g. “CanESM5”, “CRCM5”, “ERA5”, “ERA5-Land, ERA5-Preliminary”

• experiment: Name of the experiment of the model.

2.5. Columns 63

https://github.com/ES-DOC/pyessv-archive


xscen Documentation, Release 0.7.25-beta

– E.g. “historical”, “ssp245”, “rcp85”

• member: Name of the realisation. For RCMs, this is the member associated with the driver.

– E.g. “r1i1p1f1”

• xrfreq: Pandas/xarray frequency.

– E.g. “YS”, “QS-DEC”

• frequency: Frequency in letters (CMIP6 format).

– E.g. “yr”,”qtr”

• variable: Variables in the dataset. It can be a Tuple.

– E.g. “tasmax”, (“tasmax”, “tasmin”, “pr”)

• domain: Name of the region covered by the dataset. It can also contain information on the grid.

– E.g. “global”, “NAM”, “ARC-44”, “ARC-22”

• date_start: First date of the dataset. This usually is a Datetime object with a ms resolution.

– E.g. “2022-06-03 00:00:00”

• date_end: Last date of the dataset. This usually is a Datetime object with a ms resolution.

– E.g. “2022-06-03 00:00:00”

• version: Version of the dataset.

– E.g. “1.0”

• format: Format of the dataset.

– E.g. “zarr”, “nc”

• path: Path to the dataset.

– E.g. “/some/path/to/the/data.zarr”

2.6 Workflow templates

This folder contains templates of xscen workflows to provide additional “real-world” examples besides the notebooks
and API docs. Most of them are not usable as-is, but usually only the configuration (some yaml files) needs to be edited.

Most of the templates are heavily commented in their python code as well as their configuration files, but a small
summary of what each does is included here.

Warning: The link above brings you to the development version of the templates. You might want to access a
version specific to your installed xscen. Click the dropdown menu in the upper left corner that says “main” and
navigate to “tags” and the specific version of interest.

64 Chapter 2. Features

https://github.com/Ouranosinc/xscen/tree/main/templates


xscen Documentation, Release 0.7.25-beta

2.6.1 1 - Basic workflow with config

The archetypal xscen workflow that does every steps of a normal climate scenarisation project : extract, regrid, biasad-
just, cleanup, rechunk, diagnostics, indicators, climatology, delta, ensembles. It is controlled from the config1.yml
file. For each step, it will iterate over each member of the ensemble, thus creating many intermediate files before the
final products.

2.6.2 2 - Compute indicators

A basic, single-step workflow to compute a list (module) of xclim indicators. Also controlled from its config2.yml
file, but its path needs to be passed to the script through the command line.

2.7 API

2.7.1 Catalog

Catalog objects and related tools.

xscen.catalog.COLUMNS = ['id', 'type', 'processing_level', 'bias_adjust_institution',
'bias_adjust_project', 'mip_era', 'activity', 'driving_model', 'institution', 'source',
'experiment', 'member', 'xrfreq', 'frequency', 'variable', 'domain', 'date_start',
'date_end', 'version', 'format', 'path']

Official column names.

class xscen.catalog.DataCatalog(*args, **kwargs)
A read-only intake_esm catalog adapted to xscen’s syntax.

This class expects the catalog to have the columns listed in xscen.catalog.COLUMNS and it comes with default
arguments for reading the CSV files (xscen.catalog.csv_kwargs). For example, all string columns (except
path) are cast to a categorical dtype and the datetime columns are parsed with a special function that allows dates
outside the conventional datetime64[ns] bounds by storing the data using pandas.Period objects.

Parameters

• *args (str or os.PathLike or dict) – Path to a catalog JSON file. If a dict, it must have two
keys: ‘esmcat’ and ‘df’. ‘esmcat’ must be a dict representation of the ESM catalog. ‘df’ must
be a Pandas DataFrame containing content that would otherwise be in the CSV file.

• check_valid (bool) – If True, will check that all files in the catalog exist on disk and remove
those that don’t.

• drop_duplicates (bool) – If True, will drop duplicates in the catalog based on the ‘id’ and
‘path’ columns.

• **kwargs (dict) – Any other arguments are passed to intake_esm.esm_datastore.

See also:

intake_esm.core.esm_datastore

check_valid()

Verify that all files in the catalog exist on disk and remove those that don’t.

If a file is a Zarr, it will also check that all variables are present and remove those that aren’t.

2.7. API 65

https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period


xscen Documentation, Release 0.7.25-beta

drop_duplicates(columns: list[str] | None = None)
Drop duplicates in the catalog based on a subset of columns.

Parameters
columns (list of str, optional) – The columns used to identify duplicates. If None, ‘id’ and
‘path’ are used.

exists_in_cat(**columns)→ bool
Check if there is an entry in the catalogue corresponding to the arguments given.

Parameters
columns (Arguments that will be given to catalog.search)

Returns
bool – True if there is an entry in the catalogue corresponding to the arguments given.

classmethod from_df(data: DataFrame | PathLike | Sequence[PathLike], esmdata: PathLike | dict | None
= None, *, read_csv_kwargs: Mapping[str, Any] | None = None, name: str =
'virtual', **intake_kwargs)

Create a DataCatalog from one or more csv files.

Parameters

• data (DataFrame or path or sequence of paths) – A DataFrame or one or more paths to
csv files.

• esmdata (path or dict, optional) – The “ESM collection data” as a path to a json file or a
dict. If None (default), xscen’s default esm_col_data is used.

• read_csv_kwargs (dict, optional) – Extra kwargs to pass to pd.read_csv, in addition to the
ones in csv_kwargs.

• name (str) – If metadata doesn’t contain it, a name to give to the catalog.

See also:

pandas.read_csv

iter_unique(*columns)
Iterate over sub-catalogs for each group of unique values for all specified columns.

This is a generator that yields a tuple of the unique values of the current group, in the same order as the
arguments, and the sub-catalog.

search(**columns)
Modification of .search() to add the ‘periods’ keyword.

to_dataset(concat_on: str | list[str] | None = None, create_ensemble_on: str | list[str] | None = None,
ensemble_name: list[str] | None = None, calendar: str | None = 'standard', **kwargs)→
Dataset

Open the catalog’s entries into a single dataset.

Same as to_dask(), but with additional control over the aggregations. The dataset definition logic is left
untouched by this method (by default: [“id”, “domain”, “processing_level”, “xrfreq”]), except that newly
aggregated columns are removed from the “id”. This will override any “custom” id, ones not unstackable
with unstack_id().

Ensemble preprocessing logic is taken from xclim.ensembles.create_ensemble(). When cre-
ate_ensemble_on is given, the function ensures all entries have the correct time coordinate according to
xrfreq.

Parameters

66 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• concat_on (list of str or str, optional) – A list of catalog columns over which to concat
the datasets (in addition to ‘time’). Each will become a new dimension with the column
values as coordinates. Xarray concatenation rules apply and can be acted upon through
xarray_combine_by_coords_kwargs.

• create_ensemble_on (list of str or str, optional) – The given column values will
be merged into a new id-like “realization” column, which will be concatenated over.
The given columns are removed from the dataset id, to remove them from the
groupby_attrs logic. Xarray concatenation rules apply and can be acted upon through xar-
ray_combine_by_coords_kwargs.

• ensemble_name (list of strings, optional) – If create_ensemble_on is given, this can be a
subset of those column names to use when constructing the realization coordinate. If None,
this will be the same as create_ensemble_on. The resulting coordinate must be unique.

• calendar (str, optional) – If create_ensemble_on is given, all datasets are converted to
this calendar before concatenation. Ignored otherwise (default). If None, no conversion is
done. align_on is always “date”.

• kwargs – Any other arguments are passed to to_dataset_dict(). The preprocess argu-
ment cannot be used if create_ensemble_on is given.

Returns
Dataset

See also:

intake_esm.core.esm_datastore.to_dataset_dict, intake_esm.core.esm_datastore.
to_dask, xclim.ensembles.create_ensemble

unique(columns: str | Sequence[str] | None = None)
Return a series of unique values in the catalog.

Parameters
columns (str or sequence of str, optional) – The columns to get unique values from. If None,
all columns are used.

xscen.catalog.ID_COLUMNS = ['bias_adjust_project', 'mip_era', 'activity',
'driving_model', 'institution', 'source', 'experiment', 'member', 'domain']

Default columns used to create a unique ID

class xscen.catalog.ProjectCatalog(*args, **kwargs)
A DataCatalog with additional ‘write’ functionalities that can update and upload itself.

See also:

intake_esm.core.esm_datastore

classmethod create(filename: PathLike | str, *, project: dict | None = None, overwrite: bool = False)
Create a new project catalog from some project metadata.

Creates the json from default esm_col_data and an empty csv file.

Parameters

• filename (os.PathLike or str) – A path to the json file (with or without suffix).

• project (dict, optional) – Metadata to create the catalog. If None, CONFIG[‘project’] will
be used. Valid fields are:

– title : Name of the project, given as the catalog’s “title”.

2.7. API 67

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

– id
[slug-like version of the name, given as the catalog’s id (should be url-proof)] Defaults
to a modified name.

– version : Version of the project (and thus the catalog), string like “x.y.z”.

– description : Detailed description of the project, given to the catalog’s “description”.

– Any other entry defined in esm_col_data.

At least one of id and title must be given, the rest is optional.

• overwrite (bool) – If True, will overwrite any existing JSON and CSV file.

Returns
ProjectCatalog – An empty intake_esm catalog.

refresh()

Reread the catalog CSV saved on disk.

update(df: DataCatalog | esm_datastore | DataFrame | Series | Sequence[Series] | None = None)
Update the catalog with new data and writes the new data to the csv file.

Once the internal dataframe is updated with df, the csv on disk is parsed, updated with the internal
dataframe, duplicates are dropped and everything is written back to the csv. This means that nothing is
_removed_* from the csv when calling this method, and it is safe to use even with a subset of the catalog.

Warning: If a file was deleted between the parsing of the catalog and this call, it will be removed
from the csv when check_valid is called.

Parameters
df (Union[DataCatalog, intake_esm.esm_datastore, pd.DataFrame, pd.Series, Se-
quence[pd.Series]], optional) – Data to be added to the catalog. If None, nothing is added,
but the catalog is still updated.

update_from_ds(ds: Dataset, path: PathLike | str, info_dict: dict | None = None, **info_kwargs)
Update the catalog with new data and writes the new data to the csv file.

We get the new data from the attributes of ds, the dictionary info_dict and path.

Once the internal dataframe is updated with the new data, the csv on disk is parsed, updated with the
internal dataframe, duplicates are dropped and everything is written back to the csv. This means that
nothing is _removed_* from the csv when calling this method, and it is safe to use even with a subset of
the catalog.

Warning: If a file was deleted between the parsing of the catalog and this call, it will be removed
from the csv when check_valid is called.

Parameters

• ds (xarray.Dataset) – Dataset that we want to add to the catalog. The columns of the
catalog will be filled from the global attributes starting with ‘cat:’ of the dataset.

• info_dict (dict, optional) – Extra information to fill in the catalog.

• path (os.PathLike or str) – Path to the file that contains the dataset. This will be added
to the ‘path’ column of the catalog.

68 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.catalog.concat_data_catalogs(*dcs)
Concatenate a multiple DataCatalogs.

Output catalog is the union of all rows and all derived variables, with the “esmcat” of the first DataCatalog.
Duplicate rows are dropped and the index is reset.

xscen.catalog.generate_id(df: DataFrame | Dataset, id_columns: list | None = None)→ Series
Create an ID from column entries.

Parameters

• df (pd.DataFrame, xr.Dataset) – Data for which to create an ID.

• id_columns (list, optional) – List of column names on which to base the dataset definition.
Empty columns will be skipped. If None (default), uses ID_COLUMNS.

Returns
pd.Series – A series of IDs, one per row of the input DataFrame.

xscen.catalog.unstack_id(df: DataFrame | ProjectCatalog | DataCatalog)→ dict
Reverse-engineer an ID using catalog entries.

Parameters
df (Union[pd.DataFrame, ProjectCatalog, DataCatalog]) – Either a Project/DataCatalog or
a pandas DataFrame.

Returns
dict – Dictionary with one entry per unique ID, which are themselves dictionaries of all the
individual parts of the ID.

Catalog creation and path building tools.

xscen.catutils.build_path(data: dict | Dataset | DataArray | Series | DataCatalog | DataFrame, schemas: str |
PathLike | dict | None = None, root: str | PathLike | None = None, **extra_facets)
→ Path | DataCatalog | DataFrame

Parse the schema from a configuration and construct path using a dictionary of facets.

Parameters

• data (dict or xr.Dataset or xr.DataArray or pd.Series or DataCatalog or pd.DataFrame)
– Dict of facets. Or xarray object to read the facets from. In the latter case, variable and
time-dependent facets are read with parse_from_ds() and supplemented with all the
object’s attribute, giving priority to the “official” xscen attributes (prefixed with cat:, see
xscen.utils.get_cat_attrs()). Can also be a catalog or a DataFrame, in which a
“new_path” column is generated for each item.

• schemas (Path or dict, optional) – Path to YAML schematic of database schema. If None,
will use a default schema. See the comments in the xscen/data/file_schema.yml file for
more details on its construction. A dict of dict schemas can be given (same as reading the
yaml). Or a single schema dict (single element of the yaml).

• root (str or Path, optional) – If given, the generated path(s) is given under this root one.

• **extra_facets – Extra facets to supplement or override metadadata missing from the first
input.

Returns
Path or catalog – Constructed path. If “format” is absent from the facets, it has no suffix. If
data was a catalog, a copy with a “new_path” column is returned. Another “new_path_type”
column is also added if schemas was a collection of schemas (like the default).

2.7. API 69

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

Examples

To rename a full catalog, the simplest way is to do:

>>> import xscen as xs
>>> import shutil as sh
>>> new_cat = xs.catutils.build_path(old_cat)
>>> for i, row in new_cat.iterrows():
... sh.move(row.path, row.new_path)
...

xscen.catutils.parse_directory(directories: list[str | PathLike], patterns: list[str], *, id_columns: list[str] |
None = None, read_from_file: bool | Sequence[str] | tuple[Sequence[str],
Sequence[str]] | Sequence[tuple[Sequence[str], Sequence[str]]] = False,
homogenous_info: dict | None = None, cvs: str | PathLike | dict | None =
None, dirglob: str | None = None, xr_open_kwargs: Mapping[str, Any] |
None = None, only_official_columns: bool = True, progress: bool = False,
parallel_dirs: bool | int = False, file_checks: list[str] | None = None)→
DataFrame

Parse files in a directory and return them as a pd.DataFrame.

Parameters

• directories (list of os.PathLike or list of str) – List of directories to parse. The parse is
recursive.

• patterns (list of str) – List of possible patterns to be used by parse.parse() to decode
the file names. See Notes below.

• id_columns (list of str, optional) – List of column names on which to base the dataset
definition. Empty columns will be skipped. If None (default), it uses ID_COLUMNS.

• read_from_file (boolean or set of strings or tuple of 2 sets of strings or list of tuples) –
If True, if some fields were not parsed from their path, files are opened and missing fields
are parsed from their metadata, if found. If a sequence of column names, only those fields
are parsed from the file, if missing. If False (default), files are never opened. If a tuple
of 2 lists of strings, only the first file of groups defined by the first list of columns is read
and the second list of columns is parsed from the file and applied to the whole group. For
example, ([“source”],[“institution”, “activity”]) will find a group with all the files that
have the same source, open only one of the files to read the institution and activity, and
write this information in the catalog for all filles of the group. It can also be a list of those
tuples.

• homogenous_info (dict, optional) – Using the {column_name: description} format, in-
formation to apply to all files. These are applied before the cvs.

• cvs (str or os.PathLike or dict, optional) – Dictionary with mapping from parsed term
to preferred terms (Controlled VocabularieS) for each column. May have an additional
“attributes” entry which maps from attribute names in the files to official column names.
The attribute translation is done before the rest. In the “variable” entry, if a name is
mapped to None (null), that variable will not be listed in the catalog. A term can map
to another mapping from field name to values, so that a value on one column triggers
the filling of other columns. In the latter case, that other column must exist beforehand,
whether it was in the pattern or in the homogenous_info.

• dirglob (str, optional) – A glob pattern for path matching to accelerate the parsing of a
directory tree if only a subtree is needed. Only folders matching the pattern are parsed to
find datasets.

70 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

• xr_open_kwargs (dict) – If needed, arguments to send xr.open_dataset() when opening
the file to read the attributes.

• only_official_columns (bool) – If True (default), this ensures the final catalog only has
the columns defined in xscen.catalog.COLUMNS. Other fields in the patterns will raise
an error. If False, the columns are those used in the patterns and the homogenous info. In
that case, the column order is not determined. Path, format and id are always present in
the output.

• progress (bool) – If True, a counter is shown in stdout when finding files on disk. Does
nothing if parallel_dirs is not False.

• parallel_dirs (bool or int) – If True, each directory is searched in parallel. If an int, it is
the number of parallel searches. This should only be significantly useful if the directories
are on different disks.

• file_checks (list of str, optional) – A list of file checks to run on the parsed files. Available
values are: - “readable” : Check that the file is readable by the current user. - “writable”
: Check that the file is writable by the current user. - “ncvalid” : For netCDF, check that
it is valid (openable with netCDF4). Any check will slow down the parsing.

Notes

• Offical columns names are controlled and ordered by COLUMNS:

[“id”, “type”, “processing_level”, “mip_era”, “activity”, “driving_institution”,
“driving_model”, “institution”,

“source”, “bias_adjust_institution”, “bias_adjust_project”,”experiment”, “member”, “xrfreq”,
“frequency”, “variable”, “domain”, “date_start”, “date_end”, “version”]

• Not all column names have to be present, but “xrfreq” (obtainable through “frequency”),
“variable”,

“date_start” and “processing_level” are necessary for a workable catalog.

• ‘patterns’ should highlight the columns with braces.
This acts like the reverse operation of format(). It is a template string with {field name:type} elements.
The default “type” will match alphanumeric parts of the path, excluding the “_”, “/” and “" characters.
The “_” type will allow underscores. Field names prefixed by “?” will not be included in the output.
See the documentation of parse for more type options. You can also add your own types using the
register_parse_type() decorator.

The “DATES” field is special as it will only match dates, either as a single date (YYYY, YYYYMM,
YYYYMMDD) assigned to “{date_start}” (with “date_end” automatically inferred) or two dates of
the same format as “{date_start}-{date_end}”.

Example: “{source}/{?ignored project name}_{?:_}_{DATES}.nc” Here, “source” will be the full
folder name and it can’t include underscores. The first section of the filename will be excluded from
the output, it was given a name (ignore project name) to make the pattern readable. The last section
of the filenames (“dates”) will yield a “date_start” / “date_end” couple. All other sections in the
middle will be ignored, as they match “{?:_}”.

Returns
pd.DataFrame – Parsed directory files

xscen.catutils.parse_from_ds(obj: str | PathLike | Dataset, names: Sequence[str], attrs_map: Mapping[str,
str] | None = None, **xrkwargs)

Parse a list of catalog fields from the file/dataset itself.

If passed a path, this opens the file.

2.7. API 71

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Infers the variable from the variables. Infers xrfreq, frequency, date_start and date_end from the time coordinate
if present. Infers other attributes from the coordinates or the global attributes. Attributes names can be translated
using the attrs_map mapping (from file attribute name to name in names).

If the obj is the path to a Zarr dataset and none of “frequency”, “xrfreq”, “date_start” or “date_end” are requested,
parse_from_zarr() is used instead of opening the file.

Parameters

• obj (str or os.PathLike or xr.Dataset) – Dataset to parse.

• names (sequence of str) – List of attributes to be parsed from the dataset.

• attrs_map (dict, optional) – In the case of non-standard names in the file, this can be used
to match entries in the files to specific ‘names’ in the requested list.

• xrkwargs – Arguments to be passed to open_dataset().

xscen.catutils.register_parse_type(name: str, regex: str = '([^\\_\\/\\\\]*)', group_count: int = 1)
Register a new parse type to be available in parse_directory() patterns.

Function decorated by this will be registered in EXTRA_PARSE_TYPES. The function must take a single string and
should return a single string. If you return a different type, it may interfere with the other steps of parse_directory.

Parameters

• name (str) – The type name. To make use of this type, put “{field:name}” in your pattern.

• regex (str) – A regex string to determine what can be matched by this type. The default
matches anything but / and _, same as the default parse type.

• group_count (int) – The number of regex groups in the previous regex string.

2.7.2 Extraction

Functions to find and extract data from a catalog.

xscen.extract.extract_dataset(catalog: DataCatalog, *, variables_and_freqs: dict | None = None, periods:
list[str] | list[list[str]] | None = None, region: dict | None = None, to_level:
str = 'extracted', ensure_correct_time: bool = True, xr_open_kwargs: dict |
None = None, xr_combine_kwargs: dict | None = None, preprocess: Callable
| None = None, resample_methods: dict | None = None, mask: bool | Dataset
| DataArray = False)→ dict

Take one element of the output of search_data_catalogs and returns a dataset, performing conversions and re-
sampling as needed.

Nothing is written to disk within this function.

Parameters

• catalog (DataCatalog) – Sub-catalog for a single dataset, one value of the output of
search_data_catalogs.

• variables_and_freqs (dict, optional) – Variables and freqs, following a ‘variable: xrfreq-
compatible str’ format. A list of strings can also be provided. If None, it will be read
from catalog._requested_variables and catalog._requested_variable_freqs (set by vari-
ables_and_freqs in search_data_catalogs)

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
for the periods to be evaluated. Will be read from catalog._requested_periods if None.
Leave both None to extract everything.

72 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

• region (dict, optional) – Description of the region and the subsetting method (required
fields listed in the Notes) used in xscen.spatial.subset.

• to_level (str) – The processing level to assign to the output. Defaults to ‘extracted’

• ensure_correct_time (bool) – When True (default), even if the data has the correct fre-
quency, its time coordinate is checked so that it exactly matches the frequency code (xr-
freq). For example, daily data given at noon would be transformed to be given at midnight.
If the time coordinate is invalid, it raises an error.

• xr_open_kwargs (dict, optional) – A dictionary of keyword arguments to pass to Data-
Catalogs.to_dataset_dict, which will be passed to xr.open_dataset.

• xr_combine_kwargs (dict, optional) – A dictionary of keyword arguments to pass to
DataCatalogs.to_dataset_dict, which will be passed to xr.combine_by_coords.

• preprocess (callable, optional) – If provided, call this function on each dataset prior to
aggregation.

• resample_methods (dict, optional) – Dictionary where the keys are the variables
and the values are the resampling method. Options for the resampling method are
{‘mean’, ‘min’, ‘max’, ‘sum’, ‘wind_direction’}. If the method is not given for a
variable, it is guessed from the variable name and frequency, using the mapping in
CVs/resampling_methods.json. If the variable is not found there, “mean” is used by de-
fault.

• mask (xr.Dataset or xr.DataArray or bool) – A mask that is applied to all variables and
only keeps data where it is True. Where the mask is False, variable values are replaced by
NaNs. The mask should have the same dimensions as the variables extracted. If mask is
a dataset, the dataset should have a variable named ‘mask’. If mask is True, it will expect
a mask variable at xrfreq fx to have been extracted.

Returns
dict – Dictionary (keys = xrfreq) with datasets containing all available and computed variables,
subsetted to the region, everything resampled to the requested frequency.

Notes

‘region’ fields:

name: str
Region name used to overwrite domain in the catalog.

method: str
[‘gridpoint’, ‘bbox’, shape’, ‘sel’]

tile_buffer: float, optional
Multiplier to apply to the model resolution.

kwargs
Arguments specific to the method used.

See also:

intake_esm.core.esm_datastore.to_dataset_dict, xarray.open_dataset, xarray.
combine_by_coords

xscen.extract.get_warming_level(realization: Dataset | DataArray | dict | Series | DataFrame | str | list, wl:
float, *, window: int = 20, tas_baseline_period: Sequence[str] | None =
None, ignore_member: bool = False, tas_src: str | PathLike | None =
None, return_horizon: bool = True)→ dict | list[str] | str

2.7. API 73

https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset
https://docs.xarray.dev/en/stable/generated/xarray.combine_by_coords.html#xarray.combine_by_coords
https://docs.xarray.dev/en/stable/generated/xarray.combine_by_coords.html#xarray.combine_by_coords
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

Use the IPCC Atlas method to return the window of time over which the requested level of global warming is
first reached.

Parameters

• realization (xr.Dataset, xr.DataArray, dict, str, Series or sequence of those) – Model
to be evaluated. Needs the four fields mip_era, source, experiment and mem-
ber, as a dict or in a Dataset’s attributes. Strings should follow this formatting:
{mip_era}_{source}_{experiment}_{member}. Lists of dicts, strings or Datasets are also
accepted, in which case the output will be a dict. Regex wildcards (.*) are accepted, but
may lead to unexpected results. Datasets should include the catalogue attributes (starting
by “cat:”) required to create such a string: ‘cat:mip_era’, ‘cat:experiment’, ‘cat:member’,
and either ‘cat:source’ for global models or ‘cat:driving_model’ for regional models. e.g.
‘CMIP5_CanESM2_rcp85_r1i1p1’

• wl (float) – Warming level. e.g. 2 for a global warming level of +2 degree Celsius above
the mean temperature of the tas_baseline_period.

• window (int) – Size of the rolling window in years over which to compute the warming
level.

• tas_baseline_period (list, optional) – [start, end] of the base period. The warming is
calculated with respect to it. The default is [“1850”, “1900”].

• ignore_member (bool) – Decides whether to ignore the member when searching for the
model run in tas_csv.

• tas_src (str, optional) – Path to a netCDF of annual global mean temperature (tas) with
an annual “time” dimension and a “simulation” dimension with the following coordi-
nates: “mip_era”, “source”, “experiment” and “member”. If None, it will default to
data/IPCC_annual_global_tas.nc which was built from the IPCC atlas data from Itur-
bide et al., 2020 (https://doi.org/10.5194/essd-12-2959-2020) and extra data for missing
CMIP6 models and pilot models of CRCM5 and ClimEx.

• return_horizon (bool) – If True, the output will be a list following the format [‘start_yr’,
‘end_yr’] If False, the output will be a string representing the middle of the period.

Returns
dict, list or str – If realization is not a sequence, the output will follow the format indicated by
return_horizon. If realization is a sequence, the output will be a list or dictionary depending
on output, with values following the format indicated by return_horizon.

xscen.extract.resample(da: DataArray, target_frequency: str, *, ds: Dataset | None = None, method: str |
None = None, missing: str | dict | None = None)→ DataArray

Aggregate variable to the target frequency.

If the input frequency is greater than a week, the resampling operation is weighted by the number of days in each
sampling period.

Parameters

• da (xr.DataArray) – DataArray of the variable to resample, must have a “time” dimension
and be of a finer temporal resolution than “target_frequency”.

• target_frequency (str) – The target frequency/freq str, must be one of the frequency sup-
ported by xarray.

• ds (xr.Dataset, optional) – The “wind_direction” resampling method needs extra vari-
ables, which can be given here.

74 Chapter 2. Features

https://doi.org/10.5194/essd-12-2959-2020
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

• method ({‘mean’, ‘min’, ‘max’, ‘sum’, ‘wind_direction’}, optional) – The resampling
method. If None (default), it is guessed from the variable name and frequency, using
the mapping in CVs/resampling_methods.json. If the variable is not found there, “mean”
is used by default.

• missing ({‘mask’, ‘drop’} or dict, optional) – If ‘mask’ or ‘drop’, target periods that would
have been computed from fewer timesteps than expected are masked or dropped, using a
threshold of 5% of missing data. E.g. the first season of a target_frequency of “QS-DEC”
will be masked or dropped if data starts in January. If a dict, points to a xclim check
missing method which will mask periods according to the number of NaN values. The
dict must contain a “method” field corresponding to the xclim method name and may
contain any other args to pass. Options are documented in xclim.core.missing.

Returns
xr.DataArray – Resampled variable

xscen.extract.search_data_catalogs(data_catalogs: str | PathLike | DataCatalog | list[str | PathLike |
DataCatalog], variables_and_freqs: dict, *, other_search_criteria:
dict | None = None, exclusions: dict | None = None,
match_hist_and_fut: bool = False, periods: list[str] | list[list[str]] |
None = None, coverage_kwargs: dict | None = None, id_columns:
list[str] | None = None, allow_resampling: bool = False,
allow_conversion: bool = False, conversion_yaml: str | None = None,
restrict_resolution: str | None = None, restrict_members: dict | None =
None, restrict_warming_level: dict | bool | None = None)→ dict

Search through DataCatalogs.

Parameters

• data_catalogs (str, os.PathLike, DataCatalog, or a list of those) – DataCatalog (or mul-
tiple, in a list) or paths to JSON/CSV data catalogs. They must use the same columns and
aggregation options.

• variables_and_freqs (dict) – Variables and freqs to search for, following a ‘variable: xr-
freq-compatible-str’ format. A list of strings can also be provided.

• other_search_criteria (dict, optional) – Other criteria to search for in the catalogs’
columns, following a ‘column_name: list(subset)’ format. You can also pass ‘re-
quire_all_on: list(columns_name)’ in order to only return results that correspond to all
other criteria across the listed columns. More details available at https://intake-esm.
readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html .

• exclusions (dict, optional) – Same as other_search_criteria, but for eliminating results.
Any result that matches any of the exclusions will be removed.

• match_hist_and_fut (bool) – If True, historical and future simulations will be combined
into the same line, and search results lacking one of them will be rejected.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
for the periods to be evaluated.

• coverage_kwargs (dict, optional) – Arguments to pass to subset_file_coverage (only used
when periods is not None).

• id_columns (list, optional) – List of columns used to create a id column. If None is given,
the original “id” is left.

• allow_resampling (bool) – If True (default), variables with a higher time resolution than
requested are considered.

2.7. API 75

https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#module-xclim.core.missing
https://intake-esm.readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html
https://intake-esm.readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html


xscen Documentation, Release 0.7.25-beta

• allow_conversion (bool) – If True (default) and if the requested variable cannot be found,
intermediate variables are searched given that there exists a converting function in the
“derived variable registry”.

• conversion_yaml (str, optional) – Path to a YAML file that defines the possible conver-
sions (used alongside ‘allow_conversion’=True). This file should follow the xclim con-
ventions for building a virtual module. If None, the “derived variable registry” will be
defined by the file in “xscen/xclim_modules/conversions.yml”

• restrict_resolution (str, optional) – Used to restrict the results to the finest/coarsest res-
olution available for a given simulation. [‘finest’, ‘coarsest’].

• restrict_members (dict, optional) – Used to restrict the results to a given number of
members for a given simulation. Currently only supports {“ordered”: int} format.

• restrict_warming_level (bool or dict, optional) – Used to restrict the results only to
datasets that exist in the csv used to compute warming levels in subset_warming_level.
If True, this will only keep the datasets that have a mip_era, source, experiment and mem-
ber combination that exist in the csv. This does not guarantee that a given warming level
will be reached, only that the datasets have corresponding columns in the csv. More option
can be added by passing a dictionary instead of a boolean. If {‘ignore_member’:True},
it will disregard the member when trying to match the dataset to a column. If {tas_src:
Path_to_netcdf}, it will use an alternative netcdf instead of the default one provided by
xscen. If ‘wl’ is a provided key, then xs.get_warming_level will be called and only datasets
that reach the given warming level will be kept. This can be combined with other argu-
ments of the function, for example {‘wl’: 1.5, ‘window’: 30}.

Notes

• The “other_search_criteria” and “exclusions” arguments accept wildcard (*) and regular expressions.

• Frequency can be wildcarded with ‘NA’ in the variables_and_freqs dict.

• Variable names cannot be wildcarded, they must be CMIP6-standard.

Returns
dict – Keys are the id and values are the DataCatalogs for each entry. A single DataCatalog
can be retrieved with concat_data_catalogs(*out.values()). Each DataCatalog has a subset
of the derived variable registry that corresponds to the needs of this specific group. Usually,
each entry can be written to file in a single Dataset when using extract_dataset with the same
arguments.

See also:

intake_esm.core.esm_datastore.search

xscen.extract.subset_warming_level(ds: Dataset, wl: float | Sequence[float], to_level: str =
'warminglevel-{wl}vs{period0}-{period1}', wl_dim: str | bool =
'+{wl}Cvs{period0}-{period1}', **kwargs)→ Dataset | None

Subsets the input dataset with only the window of time over which the requested level of global warming is first
reached, using the IPCC Atlas method.

Parameters

• ds (xr.Dataset) – Input dataset. The dataset should include attributes to help rec-
ognize it and find its warming levels - ‘cat:mip_era’, ‘cat:experiment’, ‘cat:member’,
and either ‘cat:source’ for global models or ‘cat:driving_institution’ (optional) +

76 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

‘cat:driving_model’ for regional models. Or , it should include a realization dimen-
sion constructed as “{mip_era}_{source or driving_model}_{experiment}_{member}”
for vectorized subsetting. Vectorized subsetting is currently only implemented for annual
data.

• wl (float or sequence of floats) – Warming level. e.g. 2 for a global warming level of +2
degree Celsius above the mean temperature of the tas_baseline_period. Multiple levels
can be passed, in which case using “{wl}” in to_level and wl_dim is not recommended.
Mutliple levels are currently only implemented for annual data.

• to_level – The processing level to assign to the output. Use “{wl}”, “{period0}”
and “{period1}” in the string to dynamically include wl, ‘tas_baseline_period[0]’ and
‘tas_baseline_period[1]’.

• wl_dim (str or boolean, optional) – The value to use to fill the new warminglevel dimen-
sion. Use “{wl}”, “{period0}” and “{period1}” in the string to dynamically include wl,
‘tas_baseline_period[0]’ and ‘tas_baseline_period[1]’. If None, no new dimensions will
be added, invalid if wl is a sequence. If True, the dimension will include wl as numbers
and units of “degC”.

• **kwargs – Instructions on how to search for warming levels, passed to
get_warming_level().

Returns
xr.Dataset or None – Warming level dataset, or None if ds can’t be subsetted for the requested
warming level. The dataset will have a new dimension warminglevel with wl_dim as coordi-
nates. If wl was a list or if ds had a “realization” dim, the “time” axis is replaced by a fake time
starting in 1000-01-01 and with a length of window years. Start and end years of the subsets
are bound in the new coordinate “warminglevel_bounds”.

2.7.3 Regridding

Functions to regrid datasets.

xscen.regrid.create_mask(ds: Dataset | DataArray, mask_args: dict)→ DataArray
Create a 0-1 mask based on incoming arguments.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be evaluated

• mask_args (dict) – Instructions to build the mask (required fields listed in the Notes).

Note:

‘mask’ fields:

variable: str, optional
Variable on which to base the mask, if ds_mask is not a DataArray.

where_operator: str, optional
Conditional operator such as ‘>’

where_threshold: str, optional
Value threshold to be used in conjunction with where_operator.

mask_nans: bool
Whether to apply a mask on NaNs.

2.7. API 77

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Returns
xr.DataArray – Mask array.

xscen.regrid.regrid_dataset(ds: Dataset, ds_grid: Dataset, weights_location: str | PathLike, *,
regridder_kwargs: dict | None = None, intermediate_grids: dict | None = None,
to_level: str = 'regridded')→ Dataset

Regrid a dataset according to weights and a reference grid.

Based on an intake_esm catalog, this function performs regridding on Zarr files.

Parameters

• ds (xarray.Dataset) – Dataset to regrid. The Dataset needs to have lat/lon coordinates.
Supports a ‘mask’ variable compatible with ESMF standards.

• weights_location (Union[str, os.PathLike]) – Path to the folder where weight file is saved.

• ds_grid (xr.Dataset) – Destination grid. The Dataset needs to have lat/lon coordinates.
Supports a ‘mask’ variable compatible with ESMF standards.

• regridder_kwargs (dict, optional) – Arguments to send xe.Regridder(). If it contains
skipna or out_chunks, those are passed to the regridder call directly.

• intermediate_grids (dict, optional) – This argument is used to do a regridding in many
steps, regridding to regular grids before regridding to the final ds_grid. This is useful
when there is a large jump in resolution between ds and ds grid. The format is a nested
dictionary shown in Notes. If None, no intermediary grid is used, there is only a regrid
from ds to ds_grid.

• to_level (str) – The processing level to assign to the output. Defaults to ‘regridded’

Returns
xarray.Dataset – Regridded dataset

Notes

intermediate_grids =

{‘name_of_inter_grid_1’: {‘cf_grid_2d’: {arguments for util.cf_grid_2d
},’regridder_kwargs’:{arguments for xe.Regridder}},

‘name_of_inter_grid_2’: dictionary_as_above}

See also:

xesmf.regridder, xesmf.util.cf_grid_2d

2.7.4 Bias Adjustment

Functions to train and adjust a dataset using a bias-adjustment algorithm.

xscen.biasadjust.adjust(dtrain: Dataset, dsim: Dataset, periods: list[str] | list[list[str]], *, xclim_adjust_args:
dict | None = None, to_level: str = 'biasadjusted', bias_adjust_institution: str | None
= None, bias_adjust_project: str | None = None, moving_yearly_window: dict | None
= None, align_on: str | None = 'year')→ Dataset

Adjust a simulation.

Parameters

• dtrain (xr.Dataset) – A trained algorithm’s dataset, as returned by train.

78 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://pangeo-xesmf.readthedocs.io/en/latest/user_api.html#xesmf.util.cf_grid_2d
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• dsim (xr.Dataset) – Simulated timeseries, projected period.

• periods (list of str or list of lists of str) – Either [start, end] or list of [start, end] of the
simulation periods to be adjusted (one at a time).

• xclim_adjust_args (dict, optional) – Dict of arguments to pass to the .adjust of the ad-
justment object.

• to_level (str) – The processing level to assign to the output. Defaults to ‘biasadjusted’

• bias_adjust_institution (str, optional) – The institution to assign to the output.

• bias_adjust_project (str, optional) – The project to assign to the output.

• moving_yearly_window (dict, optional) – Arguments to pass to
xclim.sdba.construct_moving_yearly_window. If not None, con-
struct_moving_yearly_window will be called on dsim (and scen in xclim_adjust_args if it
exists) before adjusting and unpack_moving_yearly_window will be called on the output
after the adjustment. construct_moving_yearly_window stacks windows of the dataArray
in a new ‘movingwin’ dimension. unpack_moving_yearly_window unpacks it to a normal
time series.

• align_on (str, optional) – align_on argument for the fonction
xclim.core.calendar.convert_calendar.

Returns
xr.Dataset – dscen, the bias-adjusted timeseries.

See also:

xclim.sdba.adjustment.DetrendedQuantileMapping, xclim.sdba.adjustment.ExtremeValues

xscen.biasadjust.train(dref: Dataset, dhist: Dataset, var: str | list[str], period: list[str], *, method: str =
'DetrendedQuantileMapping', group: Grouper | str | dict | None = None,
xclim_train_args: dict | None = None, maximal_calendar: str = 'noleap', adapt_freq:
dict | None = None, jitter_under: dict | None = None, jitter_over: dict | None = None,
align_on: str | None = 'year')→ Dataset

Train a bias-adjustment.

Parameters

• dref (xr.Dataset) – The target timeseries, on the reference period.

• dhist (xr.Dataset) – The timeseries to adjust, on the reference period.

• var (str or list of str) – Variable on which to do the adjustment. Currently only supports
one variable.

• period (list of str) – [start, end] of the reference period

• method (str) – Name of the sdba.TrainAdjust method of xclim.

• group (str or sdba.Grouper or dict, optional) – Grouping information. If a string,
it is interpreted as a grouper on the time dimension. If a dict, it is passed to
sdba.Grouper.from_kwargs. Defaults to {“group”: “time.dayofyear”, “window”: 31}.

• xclim_train_args (dict) – Dict of arguments to pass to the .train of the adjustment object.

• maximal_calendar (str) – Maximal calendar dhist can be. The hierarchy: 360_day <
noleap < standard < all_leap. If dhist’s calendar is higher than maximal calendar, it will
be converted to the maximal calendar.

• adapt_freq (dict, optional) – If given, a dictionary of args to pass to the frequency adap-
tation function.

2.7. API 79

https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.DetrendedQuantileMapping
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.ExtremeValues
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.base.Grouper
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• jitter_under (dict, optional) – If given, a dictionary of args to pass to jitter_under_thresh.

• jitter_over (dict, optional) – If given, a dictionary of args to pass to jitter_over_thresh.

• align_on (str, optional) – align_on argument for the function
xclim.core.calendar.convert_calendar.

Returns
xr.Dataset – Trained algorithm’s data.

See also:

xclim.sdba.adjustment.DetrendedQuantileMapping, xclim.sdba.adjustment.ExtremeValues

2.7.5 Indicators

Functions to compute xclim indicators.

xscen.indicators.compute_indicators(ds: Dataset, indicators: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, *, periods: list[str] |
list[list[str]] | None = None, restrict_years: bool = True, to_level: str
| None = 'indicators')→ dict

Calculate variables and indicators based on a YAML call to xclim.

The function cuts the output to be the same years as the inputs. Hence, if an indicator creates a timestep outside
the original year range (e.g. the first DJF for QS-DEC), it will not appear in the output.

Parameters

• ds (xr.Dataset) – Dataset to use for the indicators.

• indicators (Union[str, os.PathLike, Sequence[Indicator], Sequence[tuple[str, Indica-
tor]], ModuleType]) – Path to a YAML file that instructs on how to calculate missing
variables. Can also be only the “stem”, if translations and custom indices are imple-
mented. Can be the indicator module directly, or a sequence of indicators or a sequence
of tuples (indicator name, indicator) as returned by iter_indicators().

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods over which to compute the indicators. This is needed when the time
axis of ds contains some jumps in time. If None, the dataset will be considered continuous.

• restrict_years (bool) – If True, cut the time axis to be within the same years as the input.
This is mostly useful for frequencies that do not start in January, such as QS-DEC. In that
instance, xclim would start on previous_year-12-01 (DJF), with a NaN. restrict_years will
cut that first timestep. This should have no effect on YS and MS indicators.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
dict – Dictionary (keys = timedeltas) with indicators separated by temporal resolution.

See also:

xclim.indicators, xclim.core.indicator.build_indicator_module_from_yaml

xscen.indicators.load_xclim_module(filename: str | PathLike, reload: bool = False)→ module
Return the xclim module described by the yaml file (or group of yaml, jsons and py).

Parameters

80 Chapter 2. Features

https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.DetrendedQuantileMapping
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.ExtremeValues
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml


xscen Documentation, Release 0.7.25-beta

• filename (str or os.PathLike) – The filepath to the yaml file of the module or to the stem
of yaml, jsons and py files.

• reload (bool) – If False (default) and the module already exists in xclim.indicators, it is
not re-build.

Returns
ModuleType – The xclim module.

2.7.6 Ensembles

Ensemble statistics and weights.

xscen.ensembles.build_partition_data(datasets: dict | list[Dataset], partition_dim: list[str] = ['source',
'experiment', 'bias_adjust_project'], subset_kw: dict = None,
regrid_kw: dict = None, rename_dict: dict = None)

Get the input for the xclim partition functions.

From a list or dictionary of datasets, create a single dataset with partition_dim dimensions (and time) to pass to
one of the xclim partition functions (https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning).
If the inputs have different grids, they have to be subsetted and regridded to a common grid/point.

Parameters

• datasets (dict) – List or dictionnary of Dataset objects that will be included in
the ensemble. The datasets should include the necessary (“cat:”) attributes to un-
derstand their metadata. Tip: With a project catalog, you can do: datasets =
pcat.search(**search_dict).to_dataset_dict().

• partition_dim (list[str]) – Components of the partition. They will become the dimension
of the output. The default is [‘source’, ‘experiment’, ‘bias_adjust_project’]. For source,
the dimension will actually be institution_source_member.

• subset_kw (dict) – Arguments to pass to xs.spatial.subset().

• regrid_kw – Arguments to pass to xs.regrid_dataset().

• rename_dict – Dictionary to rename the dimensions from xscen names to xclim names.
The default is {‘source’: ‘model’, ‘bias_adjust_project’: ‘downscaling’, ‘experiment’:
‘scenario’}.

Returns
xr.Dataset – The input data for the partition functions.

See also:

xclim.ensembles

xscen.ensembles.ensemble_stats(datasets: dict | list[str | PathLike] | list[Dataset] | list[DataArray] | Dataset,
statistics: dict, *, create_kwargs: dict | None = None, weights: DataArray |
None = None, common_attrs_only: bool = True, to_level: str = 'ensemble')
→ Dataset

Create an ensemble and computes statistics on it.

Parameters

• datasets (dict or list of [str, os.PathLike, Dataset or DataArray], or Dataset) – List
of file paths or xarray Dataset/DataArray objects to include in the ensemble. A dic-
tionary can be passed instead of a list, in which case the keys are used as coordinates
along the new realization axis. Tip: With a project catalog, you can do: datasets =

2.7. API 81

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#module-xclim.ensembles
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

pcat.search(**search_dict).to_dataset_dict(). If a single Dataset is passed, it is assumed
to already be an ensemble and will be used as is. The ‘realization’ dimension is required.

• statistics (dict) – xclim.ensembles statistics to be called. Dictionary in the format {func-
tion: arguments}. If a function requires ‘weights’, you can leave it out of this dictionary
and it will be applied automatically if the ‘weights’ argument is provided. See the Notes
section for more details on robustness statistics, which are more complex in their usage.

• create_kwargs (dict, optional) – Dictionary of arguments for
xclim.ensembles.create_ensemble.

• weights (xr.DataArray, optional) – Weights to apply along the ‘realization’ dimension.
This array cannot contain missing values.

• common_attrs_only (bool) – If True, keeps only the global attributes that are the same
for all datasets and generate new id. If False, keeps global attrs of the first dataset (same
behaviour as xclim.ensembles.create_ensemble)

• to_level (str) – The processing level to assign to the output.

Returns
xr.Dataset – Dataset with ensemble statistics

Notes

• The positive fraction in ‘change_significance’ and ‘robustness_fractions’ is calculated by xclim using ‘v >
0’, which is not appropriate for relative deltas. This function will attempt to detect relative deltas by using
the ‘delta_kind’ attribute (‘rel.’, ‘relative’, ‘*’, or ‘/’) and will apply ‘v - 1’ before calling the function.

• The ‘robustness_categories’ statistic requires the outputs of ‘robustness_fractions’. Thus, there are two
ways to build the ‘statistics’ dictionary:

1. Having ‘robustness_fractions’ and ‘robustness_categories’ as separate entries in the dictionary. In
this case, all outputs will be returned.

2. Having ‘robustness_fractions’ as a nested dictionary under ‘robustness_categories’. In this case, only
the robustness categories will be returned.

• A ‘ref’ DataArray can be passed to ‘change_significance’ and ‘robustness_fractions’, which will be used by
xclim to compute deltas and perform some significance tests. However, this supposes that both ‘datasets’
and ‘ref’ are still timeseries (e.g. annual means), not climatologies where the ‘time’ dimension repre-
sents the period over which the climatology was computed. Thus, using ‘ref’ is only accepted if ‘robust-
ness_fractions’ (or ‘robustness_categories’) is the only statistic being computed.

• If you want to use compute a robustness statistic on a climatology, you should first compute the climatolo-
gies and deltas yourself, then leave ‘ref’ as None and pass the deltas as the ‘datasets’ argument. This will
be compatible with other statistics.

See also:

xclim.ensembles._base.create_ensemble, xclim.ensembles._base.ensemble_percentiles,
xclim.ensembles._base.ensemble_mean_std_max_min, xclim.ensembles._robustness.
robustness_fractions, xclim.ensembles._robustness.robustness_categories, xclim.
ensembles._robustness.robustness_coefficient

xscen.ensembles.generate_weights(datasets: dict | list, *, independence_level: str = 'model',
balance_experiments: bool = False, attribute_weights: dict | None =
None, skipna: bool = True, v_for_skipna: str | None = None, standardize:
bool = False, experiment_weights: bool = False)→ DataArray

82 Chapter 2. Features

https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.create_ensemble
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.ensemble_percentiles
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.ensemble_mean_std_max_min
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_fractions
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_fractions
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_categories
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_coefficient
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_coefficient
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Use realization attributes to automatically generate weights along the ‘realization’ dimension.

Parameters

• datasets (dict) – List of Dataset objects that will be included in the ensemble. The
datasets should include the necessary attributes to understand their metadata - See ‘Notes’
below. A dictionary can be passed instead of a list, in which case the keys are used
for the ‘realization’ coordinate. Tip: With a project catalog, you can do: datasets =
pcat.search(**search_dict).to_dataset_dict().

• independence_level (str) – ‘model’: Weights using the method ‘1 model - 1 Vote’, where
every unique combination of ‘source’ and ‘driving_model’ is considered a model. ‘GCM’:
Weights using the method ‘1 GCM - 1 Vote’ ‘institution’: Weights using the method ‘1
institution - 1 Vote’

• balance_experiments (bool) – If True, each experiment will be given a total weight of 1
(prior to subsequent weighting made through attribute_weights). This option requires the
‘cat:experiment’ attribute to be present in all datasets.

• attribute_weights (dict, optional) – Nested dictionaries of weights to apply to each
dataset. These weights are applied after the independence weighting. The first level
of keys are the attributes for which weights are being given. The second level of keys
are unique entries for the attribute, with the value being either an individual weight or
a xr.DataArray. If a DataArray is used, its dimensions must be the same non-stationary
coordinate as the datasets (ex: time, horizon) and the attribute being weighted (ex: exper-
iment). A others key can be used to give the same weight to all entries not specifically
named in the dictionary. Example #1: {‘source’: {‘MPI-ESM-1-2-HAM’: 0.25, ‘MPI-
ESM1-2-HR’: 0.5}}, Example #2: {‘experiment’: {‘ssp585’: xr.DataArray, ‘ssp126’:
xr.DataArray}, ‘institution’: {‘CCCma’: 0.5, ‘others’: 1}}

• skipna (bool) – If True, weights will be computed from attributes only. If False, weights
will be computed from the number of non-missing values. skipna=False requires either a
‘time’ or ‘horizon’ dimension in the datasets.

• v_for_skipna (str, optional) – Variable to use for skipna=False. If None, the first variable
in the first dataset is used.

• standardize (bool) – If True, the weights are standardized to sum to 1 (per
timestep/horizon, if skipna=False).

• experiment_weights (bool) – Deprecated. Use balance_experiments instead.

Notes

The following attributes are required for the function to work:

• ‘cat:source’ in all datasets

• ‘cat:driving_model’ in regional climate models

• ‘cat:institution’ in all datasets if independence_level=’institution’

• ‘cat:experiment’ in all datasets if split_experiments=True

Even when not required, the ‘cat:member’ and ‘cat:experiment’ attributes are strongly recommended to ensure
the weights are computed correctly.

2.7. API 83



xscen Documentation, Release 0.7.25-beta

Returns
xr.DataArray – Weights along the ‘realization’ dimension, or 2D weights along the ‘realization’
and ‘time/horizon’ dimensions if skipna=False.

2.7.7 Aggregation

Functions to aggregate data over time and space.

xscen.aggregate.climatological_mean(ds: Dataset, *, window: int | None = None, min_periods: int | None =
None, interval: int = 1, periods: list[str] | list[list[str]] | None =
None, to_level: str | None = 'climatology')→ Dataset

Compute the mean over ‘year’ for given time periods, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• window (int, optional) – Number of years to use for the time periods. If left at None and
periods is given, window will be the size of the first period. If left at None and periods is
not given, the window will be the size of the input dataset.

• min_periods (int, optional) – For the rolling operation, minimum number of years re-
quired for a value to be computed. If left at None and the xrfreq is either QS or AS and
doesn’t start in January, min_periods will be one less than window. If left at None, it will
be deemed the same as ‘window’.

• interval (int) – Interval (in years) at which to provide an output.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods to be considered. This is needed when the time axis of ds contains
some jumps in time. If None, the dataset will be considered continuous.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset of the climatological mean, by calling climatological_op with
option op==’mean’.

xscen.aggregate.climatological_op(ds: Dataset, *, op: str | dict = 'mean', window: int | None = None,
min_periods: int | float | None = None, stride: int = 1, periods: list[str] |
list[list[str]] | None = None, rename_variables: bool = True, to_level:
str = 'climatology', horizons_as_dim: bool = False)→ Dataset

Perform an operation ‘op’ over time, for given time periods, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• op (str or dict) – Operation to perform over time. The operation can be any method name
of xarray.core.rolling.DatasetRolling, ‘linregress’, or a dictionary. If ‘op’ is a dictionary,
the key is the operation name and the value is a dict of kwargs accepted by the oper-
ation. While other operations are technically possible, the following are recommended
and tested: [‘max’, ‘mean’, ‘median’, ‘min’, ‘std’, ‘sum’, ‘var’, ‘linregress’]. Operations
beyond methods of xarray.core.rolling.DatasetRolling include:

– ‘linregress’ : Computes the linear regression over time, using scipy.stats.linregress
and employing years as regressors. The output will have a new dimension ‘lin-
reg_param’ with coordinates: [‘slope’, ‘intercept’, ‘rvalue’, ‘pvalue’, ‘stderr’, ‘inter-
cept_stderr’].

84 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Only one operation per call is supported, so len(op)==1 if a dict.

• window (int, optional) – Number of years to use for the rolling operation. If left at None
and periods is given, window will be the size of the first period. Hence, if periods are of
different lengths, the shortest period should be passed first. If left at None and periods is
not given, the window will be the size of the input dataset.

• min_periods (int or float, optional) – For the rolling operation, minimum number of years
required for a value to be computed. If left at None and the xrfreq is either QS or AS and
doesn’t start in January, min_periods will be one less than window. Otherwise, if left at
None, it will be deemed the same as ‘window’. If passed as a float value between 0 and 1,
this will be interpreted as the floor of the fraction of the window size.

• stride (int) – Stride (in years) at which to provide an output from the rolling window
operation.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods to be considered. This is needed when the time axis of ds contains
some jumps in time. If None, the dataset will be considered continuous.

• rename_variables (bool) – If True, ‘_clim_{op}’ will be added to variable names.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

• horizons_as_dim (bool) – If True, the output will have ‘horizon’ and the frequency as
‘month’, ‘season’ or ‘year’ as dimensions and coordinates. The ‘time’ coordinate will be
unstacked to horizon and frequency dimensions. Horizons originate from periods and/or
windows and their stride in the rolling operation.

Returns
xr.Dataset – Dataset with the results from the climatological operation.

xscen.aggregate.compute_deltas(ds: Dataset, reference_horizon: str | Dataset, *, kind: str | dict = '+',
rename_variables: bool = True, to_level: str | None = 'deltas')→ Dataset

Compute deltas in comparison to a reference time period, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• reference_horizon (str or xr.Dataset) – Either a YYYY-YYYY string corresponding to
the ‘horizon’ coordinate of the reference period, or a xr.Dataset containing the climato-
logical mean.

• kind (str or dict) – [‘+’, ‘/’, ‘%’] Whether to provide absolute, relative, or percentage
deltas. Can also be a dictionary separated per variable name.

• rename_variables (bool) – If True, ‘_delta_YYYY-YYYY’ will be added to variable
names.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset with the requested deltas.

xscen.aggregate.produce_horizon(ds: Dataset, indicators: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, *, periods: list[str] | list[list[str]]
| None = None, warminglevels: dict | None = None, to_level: str | None =
'horizons', period: list | None = None)→ Dataset

2.7. API 85

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Compute indicators, then the climatological mean, and finally unstack dates in order to have a single dataset with
all indicators of different frequencies.

Once this is done, the function drops ‘time’ in favor of ‘horizon’. This function computes the indicators and does
an interannual mean. It stacks the season and month in different dimensions and adds a dimension horizon for
the period or the warming level, if given.

Parameters

• ds (xr.Dataset) – Input dataset with a time dimension.

• indicators (Union[str, os.PathLike, Sequence[Indicator], Sequence[Tuple[str, Indica-
tor]], ModuleType]) – Indicators to compute. It will be passed to the indicators argument
of xs.compute_indicators.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start_year,
end_year] for the period(s) to be evaluated. If both periods and warminglevels are None,
the full time series will be used.

• warminglevels (dict, optional) – Dictionary of arguments to pass to
py:func:xscen.subset_warming_level. If ‘wl’ is a list, the function will be called
for each value and produce multiple horizons. If both periods and warminglevels are
None, the full time series will be used.

• to_level (str, optional) – The processing level to assign to the output. If there is only one
horizon, you can use “{wl}”, “{period0}” and “{period1}” in the string to dynamically
include that information in the processing level.

Returns
xr.Dataset – Horizon dataset.

xscen.aggregate.spatial_mean(ds: Dataset, method: str, *, spatial_subset: bool | None = None, call_clisops:
bool | None = False, region: str | dict | None = None, kwargs: dict | None =
None, simplify_tolerance: float | None = None, to_domain: str | None = None,
to_level: str | None = None)→ Dataset

Compute the spatial mean using a variety of available methods.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• method (str) – ‘cos-lat’ will weight the area covered by each pixel using an approximation
based on latitude. ‘interp_centroid’ will find the region’s centroid (if coordinates are not
fed through kwargs), then perform a .interp() over the spatial dimensions of the Dataset.
The coordinate can also be directly fed to .interp() through the ‘kwargs’ argument below.
‘xesmf’ will make use of xESMF’s SpatialAverager. This will typically be more precise,
especially for irregular regions, but can be much slower than other methods.

• spatial_subset (bool, optional) – If True, xscen.spatial.subset will be called prior to the
other operations. This requires the ‘region’ argument. If None, this will automatically
become True if ‘region’ is provided and the subsetting method is either ‘cos-lat’ or ‘mean’.

• region (dict or str, optional) – Description of the region and the subsetting method (re-
quired fields listed in the Notes). If method==’interp_centroid’, this is used to find the
region’s centroid. If method==’xesmf’, the bounding box or shapefile is given to Spa-
tialAverager. Can also be “global”, for global averages. This is simply a shortcut for
{‘name’: ‘global’, ‘method’: ‘bbox’, ‘lon_bnds’ [-180, 180], ‘lat_bnds’: [-90, 90]}.

86 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• kwargs (dict, optional) – Arguments to send to either mean(), interp() or SpatialAver-
ager(). For SpatialAverager, one can give skipna or out_chunks here, to be passed to the
averager call itself.

• simplify_tolerance (float, optional) – Precision (in degree) used to simplify a shapefile
before sending it to SpatialAverager(). The simpler the polygons, the faster the averaging,
but it will lose some precision.

• to_domain (str, optional) – The domain to assign to the output. If None, the domain of
the inputs is preserved.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset with the spatial dimensions averaged.

Notes

‘region’ required fields:

name: str
Region name used to overwrite domain in the catalog.

method: str
[‘gridpoint’, ‘bbox’, shape’, ‘sel’]

tile_buffer: float, optional
Multiplier to apply to the model resolution. Only used if spatial_subset==True.

kwargs
Arguments specific to the method used.

See also:

xarray.Dataset.mean, xarray.Dataset.interp, xesmf.SpatialAverager

2.7.8 Reduction

Functions to reduce an ensemble of simulations.

xscen.reduce.build_reduction_data(datasets: dict | list[Dataset], *, xrfreqs: list[str] | None = None,
horizons: list[str] | None = None)→ DataArray

Construct the input required for ensemble reduction.

This will combine all variables into a single DataArray and stack all dimensions except “realization”.

Parameters

• datasets (Union[dict, list]) – Dictionary of datasets in the format {“id”: dataset}, or list
of datasets. This can be generated by calling .to_dataset_dict() on a catalog.

• xrfreqs (list of str, optional) – List of unique frequencies across the datasets. If None,
the script will attempt to guess the frequencies from the datasets’ metadata or with
xr.infer_freq().

• horizons (list of str, optional) – Subset of horizons on which to create the data.

2.7. API 87

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.mean.html#xarray.Dataset.mean
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.interp.html#xarray.Dataset.interp
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Returns
xr.DataArray – 2D DataArray of dimensions “realization” and “criteria”, to be used as input
for ensemble reduction.

xscen.reduce.reduce_ensemble(data: DataArray, method: str, kwargs: dict)
Reduce an ensemble of simulations using clustering algorithms from xclim.ensembles.

Parameters

• data (xr.DataArray) – Selection criteria data : 2-D xr.DataArray with dimensions ‘real-
ization’ and ‘criteria’. These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm. This data can be generated using build_reduction_data().

• method (str) – [‘kkz’, ‘kmeans’]. Clustering method.

• kwargs (dict) – Arguments to send to either xclim.ensembles.kkz_reduce_ensemble or
xclim.ensembles.kmeans_reduce_ensemble

Returns

• selected (xr.DataArray) – DataArray of dimension ‘realization’ with the selected simula-
tions.

• clusters (dict) – If using kmeans clustering, realizations grouped by cluster.

• fig_data (dict) – If using kmeans clustering, data necessary to call
xclim.ensembles.plot_rsqprofile()

2.7.9 Diagnostics and Quality Checks

Functions to perform diagnostics on datasets.

xscen.diagnostics.health_checks(ds: Dataset | DataArray, *, structure: dict | None = None, calendar: str |
None = None, start_date: str | None = None, end_date: str | None = None,
variables_and_units: dict | None = None, cfchecks: dict | None = None,
freq: str | None = None, missing: dict | str | list | None = None, flags: dict |
None = None, flags_kwargs: dict | None = None, return_flags: bool =
False, raise_on: list | None = None)→ None | Dataset

Perform a series of health checks on the dataset. Be aware that missing data checks and flag checks can be slow.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset to check.

• structure (dict, optional) – Dictionary with keys “dims” and “coords” containing the ex-
pected dimensions and coordinates. This check will fail is extra dimensions or coordinates
are found.

• calendar (str, optional) – Expected calendar. Synonyms should be detected correctly (e.g.
“standard” and “gregorian”).

• start_date (str, optional) – To check if the dataset starts at least at this date.

• end_date (str, optional) – To check if the dataset ends at least at this date.

• variables_and_units (dict, optional) – Dictionary containing the expected variables and
units.

88 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• cfchecks (dict, optional) – Dictionary where the key is the variable to check and the val-
ues are the cfchecks. The cfchecks themselves must be a dictionary with the keys be-
ing the cfcheck names and the values being the arguments to pass to the cfcheck. See
xclim.core.cfchecks for more details.

• freq (str, optional) – Expected frequency, written as the result of xr.infer_freq(ds.time).

• missing (dict or str or list of str, optional) – String, list of strings, or dictionary where the
key is the method to check for missing data and the values are the arguments to pass to
the method. The methods are: “missing_any”, “at_least_n_valid”, “missing_pct”, “miss-
ing_wmo”. See xclim.core.missing() for more details.

• flags (dict, optional) – Dictionary where the key is the variable to check and the values
are the flags. The flags themselves must be a dictionary with the keys being the data_flags
names and the values being the arguments to pass to the data_flags. If None is passed
instead of a dictionary, then xclim’s default flags for the given variable are run. See
xclim.core.utils.VARIABLES. See also xclim.core.dataflags.data_flags()
for the list of possible flags.

• flags_kwargs (dict, optional) – Additional keyword arguments to pass to the data_flags
(“dims” and “freq”).

• return_flags (bool) – Whether to return the Dataset created by data_flags.

• raise_on (list of str, optional) – Whether to raise an error if a check fails, else there will
only be a warning. The possible values are the names of the checks. Use [“all”] to raise
on all checks.

Returns
xr.Dataset or None – Dataset containing the flags if return_flags is True & raise_on is False
for the “flags” check.

xscen.diagnostics.measures_heatmap(meas_datasets: list[Dataset] | dict, to_level: str = 'diag-heatmap')→
Dataset

Create a heatmap to compare the performance of the different datasets.

The columns are properties and the rows are datasets. Each point is the absolute value of the mean of the measure
over the whole domain. Each column is normalized from 0 (best) to 1 (worst).

Parameters

• meas_datasets (list of xr.Dataset or dict) – List or dictionary of datasets of measures of
properties. If it is a dictionary, the keys will be used to name the rows. If it is a list, the
rows will be given a number.

• to_level (str) – The processing_level to assign to the output.

Returns
xr.Dataset – Dataset containing the heatmap.

xscen.diagnostics.measures_improvement(meas_datasets: list[Dataset] | dict, to_level: str =
'diag-improved')→ Dataset

Calculate the fraction of improved grid points for each property between two datasets of measures.

Parameters

• meas_datasets (list of xr.Dataset or dict) – List of 2 datasets: Initial dataset of measures
and final (improved) dataset of measures. Both datasets must have the same variables. It
is also possible to pass a dictionary where the values are the datasets and the key are not
used.

• to_level (str) – processing_level to assign to the output dataset

2.7. API 89

https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.utils.VARIABLES
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.dataflags.data_flags
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Returns
xr.Dataset – Dataset containing information on the fraction of improved grid points for each
property.

xscen.diagnostics.properties_and_measures(ds: Dataset, properties: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, period: list[str] |
None = None, unstack: bool = False, rechunk: dict | None =
None, dref_for_measure: Dataset | None = None,
change_units_arg: dict | None = None, to_level_prop: str =
'diag-properties', to_level_meas: str = 'diag-measures')→
tuple[Dataset, Dataset]

Calculate properties and measures of a dataset.

Parameters

• ds (xr.Dataset) – Input dataset.

• properties (Union[str, os.PathLike, Sequence[Indicator], Sequence[tuple[str, Indica-
tor]], ModuleType]) – Path to a YAML file that instructs on how to calculate properties.
Can be the indicator module directly, or a sequence of indicators or a sequence of tuples
(indicator name, indicator) as returned by iter_indicators().

• period (list of str, optional) – [start, end] of the period to be evaluated. The period will
be selected on ds and dref_for_measure if it is given.

• unstack (bool) – Whether to unstack ds before computing the properties.

• rechunk (dict, optional) – Dictionary of chunks to use for a rechunk before computing
the properties.

• dref_for_measure (xr.Dataset, optional) – Dataset of properties to be used as the ref
argument in the computation of the measure. Ideally, this is the first output (prop) of a
previous call to this function. Only measures on properties that are provided both in this
dataset and in the properties list will be computed. If None, the second output of the
function (meas) will be an empty Dataset.

• change_units_arg (dict, optional) – If not None, calls xscen.utils.change_units on ds be-
fore computing properties using this dictionary for the variables_and_units argument. It
can be useful to convert units before computing the properties, because it is sometimes
easier to convert the units of the variables than the units of the properties (e.g. variance).

• to_level_prop (str) – processing_level to give the first output (prop)

• to_level_meas (str) – processing_level to give the second output (meas)

Returns

• prop (xr.Dataset) – Dataset of properties of ds

• meas (xr.Dataset) – Dataset of measures between prop and dref_for_meas

See also:

xclim.sdba.properties, xclim.sdba.measures, xclim.core.indicator.
build_indicator_module_from_yaml

90 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#module-xclim.sdba.properties
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#module-xclim.sdba.measures
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml


xscen Documentation, Release 0.7.25-beta

2.7.10 Input / Output

Input/Output functions for xscen.

xscen.io.clean_incomplete(path: str | PathLike, complete: Sequence[str])→ None
Delete un-catalogued variables from a zarr folder.

The goal of this function is to clean up an incomplete calculation. It will remove any variable in the zarr that is
neither in the complete list nor in the coords.

Parameters

• path (str, Path) – A path to a zarr folder.

• complete (sequence of strings) – Name of variables that were completed.

Returns
None

xscen.io.estimate_chunks(ds: str | PathLike | Dataset, dims: list, target_mb: float = 50, chunk_per_variable:
bool = False)→ dict

Return an approximate chunking for a file or dataset.

Parameters

• ds (xr.Dataset, str) – Either a xr.Dataset or the path to a NetCDF file. Existing chunks are
not taken into account.

• dims (list) – Dimension(s) on which to estimate the chunking. Not implemented for more
than 2 dimensions.

• target_mb (float) – Roughly the size of chunks (in Mb) to aim for.

• chunk_per_variable (bool) – If True, the output will be separated per variable. Other-
wise, a common chunking will be found.

Returns
dict – A dictionary mapping dimensions to chunk sizes.

xscen.io.get_engine(file: str | PathLike)→ str
Use functionality of h5py to determine if a NetCDF file is compatible with h5netcdf.

Parameters
file (str or os.PathLike) – Path to the file.

Returns
str – Engine to use with xarray

xscen.io.make_toc(ds: Dataset | DataArray, loc: str | None = None)→ DataFrame
Make a table of content describing a dataset’s variables.

This return a simple DataFrame with variable names as index, the long_name as “description” and units. Column
names and long names are taken from the activated locale if found, otherwise the english version is taken.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray from which to extract the relevant
metadata.

• loc (str, optional) – The locale to use. If None, either the first locale in the list of activated
xclim locales is used, or “en” if none is activated.

Returns
pd.DataFrame – A DataFrame with variables as index, and columns “description” and “units”.

2.7. API 91

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

xscen.io.rechunk(path_in: PathLike | str | Dataset, path_out: PathLike | str, *, chunks_over_var: dict | None =
None, chunks_over_dim: dict | None = None, worker_mem: str, temp_store: str | PathLike |
None = None, overwrite: bool = False)→ None

Rechunk a dataset into a new zarr.

Parameters

• path_in (path, str or xr.Dataset) – Input to rechunk.

• path_out (path or str) – Path to the target zarr.

• chunks_over_var (dict) – Mapping from variables to mappings from dimension name to
size. Give this argument or chunks_over_dim.

• chunks_over_dim (dict) – Mapping from dimension name to size that will be used for all
variables in ds. Give this argument or chunks_over_var.

• worker_mem (str) – The maximal memory usage of each task. When using a distributed
Client, this an approximate memory per thread. Each worker of the client should have
access to 10-20% more memory than this times the number of threads.

• temp_store (path or str, optional) – A path to a zarr where to store intermediate results.

• overwrite (bool) – If True, it will delete whatever is in path_out before doing the rechunk-
ing.

Returns
None

See also:

rechunker.rechunk

xscen.io.rechunk_for_saving(ds: Dataset, rechunk: dict)
Rechunk before saving to .zarr or .nc, generalized as Y/X for different axes lat/lon, rlat/rlon.

Parameters

• ds (xr.Dataset) – The xr.Dataset to be rechunked.

• rechunk (dict) – A dictionary with the dimension names of ds and the new chunk size.
Spatial dimensions can be provided as X/Y.

Returns
xr.Dataset – The dataset with new chunking.

xscen.io.round_bits(da: DataArray, keepbits: int)
Round floating point variable by keeping a given number of bits in the mantissa, dropping the rest. This allows
for a much better compression.

Parameters

• da (xr.DataArray) – Variable to be rounded.

• keepbits (int) – The number of bits of the mantissa to keep.

xscen.io.save_to_netcdf(ds: Dataset, filename: str | PathLike, *, rechunk: dict | None = None, bitround: bool |
int | dict = False, compute: bool = True, netcdf_kwargs: dict | None = None)

Save a Dataset to NetCDF, rechunking or compressing if requested.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• filename (str or os.PathLike) – Name of the NetCDF file to be saved.

92 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://rechunker.readthedocs.io/en/latest/api.html#rechunker.rechunk
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• rechunk (dict, optional) – This is a mapping from dimension name to new chunks (in any
format understood by dask). Spatial dimensions can be generalized as ‘X’ and ‘Y’, which
will be mapped to the actual grid type’s dimension names. Rechunking is only done on
data variables sharing dimensions with this argument.

• bitround (bool or int or dict) – If not False, float variables are bit-rounded by dropping
a certain number of bits from their mantissa, allowing for a much better compression. If
an int, this is the number of bits to keep for all float variables. If a dict, a mapping from
variable name to the number of bits to keep. If True, the number of bits to keep is guessed
based on the variable’s name, defaulting to 12, which yields a relative error below 0.013%.

• compute (bool) – Whether to start the computation or return a delayed object.

• netcdf_kwargs (dict, optional) – Additional arguments to send to_netcdf()

Returns
None

See also:

xarray.Dataset.to_netcdf

xscen.io.save_to_table(ds: Dataset | DataArray, filename: str | PathLike, output_format: str | None = None, *,
row: str | Sequence[str] | None = None, column: None | str | Sequence[str] = 'variable',
sheet: str | Sequence[str] | None = None, coords: bool | Sequence[str] = True, col_sep:
str = '_', row_sep: str | None = None, add_toc: bool | DataFrame = False, **kwargs)

Save the dataset to a tabular file (csv, excel, . . . ).

This function will trigger a computation of the dataset.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be saved. If a Dataset with
more than one variable is given, the dimension “variable” must appear in one of row,
column or sheet.

• filename (str or os.PathLike) – Name of the file to be saved.

• output_format ({‘csv’, ‘excel’, . . . }, optional) – The output format. If None (default),
it is inferred from the extension of filename. Not all possible output format are sup-
ported for inference. Valid values are any that matches a pandas.DataFrame method
like “df.to_{format}”.

• row (str or sequence of str, optional) – Name of the dimension(s) to use as indexes (rows).
Default is all data dimensions.

• column (str or sequence of str, optional) – Name of the dimension(s) to use as columns.
Default is “variable”, i.e. the name of the variable(s).

• sheet (str or sequence of str, optional) – Name of the dimension(s) to use as sheet names.
Only valid if the output format is excel.

• coords (bool or sequence of str) – A list of auxiliary coordinates to add to the columns
(as would variables). If True, all (if any) are added.

• col_sep (str,) – Multi-columns (except in excel) and sheet names are concatenated with
this separator.

• row_sep (str, optional) – Multi-index names are concatenated with this separator, except
in excel. If None (default), each level is written in its own column.

• add_toc (bool or DataFrame) – A table of content to add as the first sheet. Only valid
if the output format is excel. If True, make_toc() is used to generate the toc. The sheet

2.7. API 93

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.to_netcdf.html#xarray.Dataset.to_netcdf
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

name of the toc can be given through the “name” attribute of the DataFrame, otherwise
“Content” is used.

• kwargs – Other arguments passed to the pandas function. If the output format is excel,
kwargs to pandas.ExcelWriter can be given here as well.

xscen.io.save_to_zarr(ds: Dataset, filename: str | PathLike, *, rechunk: dict | None = None, zarr_kwargs: dict
| None = None, compute: bool = True, encoding: dict | None = None, bitround: bool |
int | dict = False, mode: str = 'f', itervar: bool = False, timeout_cleanup: bool = True)

Save a Dataset to Zarr format, rechunking and compressing if requested.

According to mode, removes variables that we don’t want to re-compute in ds.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• filename (str) – Name of the Zarr file to be saved.

• rechunk (dict, optional) – This is a mapping from dimension name to new chunks (in any
format understood by dask). Spatial dimensions can be generalized as ‘X’ and ‘Y’ which
will be mapped to the actual grid type’s dimension names. Rechunking is only done on
data variables sharing dimensions with this argument.

• zarr_kwargs (dict, optional) – Additional arguments to send to_zarr()

• compute (bool) – Whether to start the computation or return a delayed object.

• mode ({‘f’, ‘o’, ‘a’}) – If ‘f’, fails if any variable already exists. if ‘o’, removes the existing
variables. if ‘a’, skip existing variables, writes the others.

• encoding (dict, optional) – If given, skipped variables are popped in place.

• bitround (bool or int or dict) – If not False, float variables are bit-rounded by dropping
a certain number of bits from their mantissa, allowing for a much better compression. If
an int, this is the number of bits to keep for all float variables. If a dict, a mapping from
variable name to the number of bits to keep. If True, the number of bits to keep is guessed
based on the variable’s name, defaulting to 12, which yields a relative error of 0.012%.

• itervar (bool) – If True, (data) variables are written one at a time, appending to the zarr.
If False, this function computes, no matter what was passed to kwargs.

• timeout_cleanup (bool) – If True (default) and a xscen.scripting.
TimeoutException is raised during the writing, the variable being written is removed
from the dataset as it is incomplete. This does nothing if compute is False.

Returns
dask.delayed object if compute=False, None otherwise.

See also:

xarray.Dataset.to_zarr

xscen.io.subset_maxsize(ds: Dataset, maxsize_gb: float)→ list
Estimate a dataset’s size and, if higher than the given limit, subset it alongside the ‘time’ dimension.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• maxsize_gb (float) – Target size for the NetCDF files. If the dataset is bigger than this
number, it will be separated alongside the ‘time’ dimension.

94 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.ExcelWriter.html#pandas.ExcelWriter
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.to_zarr.html#xarray.Dataset.to_zarr
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Returns
list – List of xr.Dataset subsetted alongside ‘time’ to limit the filesize to the requested maxi-
mum.

xscen.io.to_table(ds: Dataset | DataArray, *, row: str | Sequence[str] | None = None, column: str |
Sequence[str] | None = None, sheet: str | Sequence[str] | None = None, coords: bool | str |
Sequence[str] = True)→ DataFrame | dict

Convert a dataset to a pandas DataFrame with support for multicolumns and multisheet.

This function will trigger a computation of the dataset.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be saved. If a Dataset with
more than one variable is given, the dimension “variable” must appear in one of row,
column or sheet.

• row (str or sequence of str, optional) – Name of the dimension(s) to use as indexes (rows).
Default is all data dimensions.

• column (str or sequence of str, optional) – Name of the dimension(s) to use as columns.
Default is “variable”, i.e. the name of the variable(s).

• sheet (str or sequence of str, optional) – Name of the dimension(s) to use as sheet names.

• coords (bool or str or sequence of str) – A list of auxiliary coordinates to add to the
columns (as would variables). If True, all (if any) are added.

Returns
pd.DataFrame or dict – DataFrame with a MultiIndex with levels row and MultiColumn with
levels column. If sheet is given, the output is dictionary with keys for each unique “sheet”
dimensions tuple, values are DataFrames. The DataFrames are always sorted with level priority
as given in row and in ascending order.

2.7.11 Spatial tools

Spatial tools.

xscen.spatial.creep_fill(da: DataArray, w: DataArray)→ DataArray
Creep fill using pre-computed weights.

Parameters

• da (DataArray) – A DataArray sharing the dimensions with the one used to compute the
weights. It can have other dimensions. Dask is supported as long as there are no chunks
over the creeped dims.

• w (DataArray) – The result of creep_weights.

Returns
xarray.DataArray, same shape as da, but values filled according to w.

2.7. API 95

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Examples

>>> w = creep_weights(da.isel(time=0).notnull(), n=1)
>>> da_filled = creep_fill(da, w)

xscen.spatial.creep_weights(mask: DataArray, n: int = 1, mode: str = 'clip')→ DataArray
Compute weights for the creep fill.

The output is a sparse matrix with the same dimensions as mask, twice.

Parameters

• mask (DataArray) – A boolean DataArray. False values are candidates to the filling.
Usually they represent missing values (mask = da.notnull()). All dimensions are creep
filled.

• n (int) – The order of neighbouring to use. 1 means only the adjacent grid cells are used.

• mode ({‘clip’, ‘wrap’}) – If a cell is on the edge of the domain, mode=’wrap’ will wrap
around to find neighbours.

Returns
DataArray – Weights. The dot product must be taken over the last N dimensions.

xscen.spatial.subset(ds: Dataset, region: dict | None = None, *, name: str | None = None, method: str | None
= None, tile_buffer: float = 0, **kwargs)→ Dataset

Subset the data to a region.

Either creates a slice and uses the .sel() method, or customizes a call to clisops.subset() that allows for an auto-
matic buffer around the region.

Parameters

• ds (xr.Dataset) – Dataset to be subsetted.

• region (dict) – Deprecated argument that is there for legacy reasons and will be abandoned
eventually.

• name (str, optional) – Used to rename the ‘cat:domain’ attribute.

• method (str) – [‘gridpoint’, ‘bbox’, shape’,’sel’] If the method is sel, this is not a call to
clisops but only a subsetting with the xarray .sel() fonction.

• tile_buffer (float) – For [‘bbox’, shape’], uses an approximation of the grid cell size to
add a buffer around the requested region. This differs from clisops’ ‘buffer’ argument in
subset_shape().

• kwargs (dict) – Arguments to be sent to clisops. If the method is sel, the keys are the
dimensions to subset and the values are turned into a slice.

Returns
xr.Dataset – Subsetted Dataset.

See also:

clisops.core.subset.subset_gridpoint, clisops.core.subset.subset_bbox, clisops.core.
subset.subset_shape

96 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_gridpoint
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_bbox
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_shape
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_shape


xscen Documentation, Release 0.7.25-beta

2.7.12 Controlled Vocabulary and Mappings

Mappings of (controlled) vocabulary. This module is generated automatically from json files in xscen/CVs. Functions
are essentially mappings, most of which are meant to provide translations between columns.

Json files must be shallow dictionaries to be supported. If the json file contains a is_regex: True entry, then the
keys are automatically translated as regex patterns and the function returns the value of the first key that matches the
pattern. Otherwise the function essentially acts like a normal dictionary. The ‘raw’ data parsed from the json file is
added in the dict attribute of the function. Example:

xs.utils.CV.frequency_to_timedelta.dict

Listing 1: frequency_to_timedelta

{
"1hr": "1H",
"3hr": "3H",
"6hr": "6H",
"day": "1D",
"sem": "1W",
"2sem": "2W",
"mon": "30D",
"qtr": "90D",
"6mon": "180D",
"yr": "365D",
"fx": "NAN"

}

Listing 2: frequency_to_xrfreq

{
"1hr": "H",
"3hr": "3H",
"6hr": "6H",
"day": "D",
"sem": "W",
"2sem": "2W",
"mon": "MS",
"qtr": "QS-DEC",
"6mon": "2QS-DEC",
"yr": "YS",
"fx": "fx"

}

Listing 3: infer_resolution

{
"CMIP": [

"^gn[a-g]{0,1}$",
"^gr[0-9]{0,1}[a-g]{0,1}$",
"^global$",
"^gnz$",
"^gr[0-9]{1}z$",

(continues on next page)

2.7. API 97



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

"^gm"
],
"CORDEX": [
"^[A-Z]{3}-[0-9]{2}[i]{0,1}$",
"^[A-Z]{3}-[0-9]{2}i$"

]
}

Listing 4: resampling_methods

{
"any": {
"sfcWindfromdir": "wind_direction",
"sfcWind": "wind_direction",
"uas": "wind_direction",
"vas": "wind_direction"

},
"D": {
"tasmin": "min",
"tasmax": "max"

}
}

Listing 5: variable_names

{
"latitude": "lat",
"longitude": "lon",
"t2m": "tas",
"d2m": "tdps",
"tp": "pr",
"u10": "uas",
"v10": "vas"

}

Listing 6: xrfreq_to_frequency

{
"is_regex": true,
"H": "1hr",
"3H": "3hr",
"6H": "6hr",
"D": "day",
"W": "sem",
"2W": "2sem",
"14d": "2sem",
"M.*": "mon",
"Q.*": "qtr",
"2Q.*": "6mon",
"A.*": "yr",
"YS": "yr",
"fx": "fx"

(continues on next page)

98 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

(continued from previous page)

}

Listing 7: xrfreq_to_timedelta

{
"is_regex": true,
"H": "1H",
"3H": "3H",
"6H": "6H",
"D": "1D",
"W": "7D",
"2W": "14D",
"M.*": "30D",
"Q.*": "90D",
"2Q.*": "180D",
"A.*": "365D",
"YS": "365D",
"fx": "NAN"

}

2.7.13 Configuration Utilities

Configuration module.

Configuration in this module is taken from yaml files.

Functions wrapped by parse_config() have their kwargs automatically patched by values in the config.

The CONFIG dictionary contains all values, structured by submodules and functions. For example, for function
function defined in module.py of this package, the config would look like:

module:
function:

...kwargs...

The load_config() function fills the CONFIG dict from yaml files. It always updates the dictionary, so the latest file
read has the highest priority.

At calling time, the priority order is always (from highest to lowest priority):

1. Explicitly passed keyword-args

2. Values in the loaded config

3. Function’s default values.

2.7. API 99



xscen Documentation, Release 0.7.25-beta

Special sections

After parsing the files, load_config() will look into the config and perform some extra actions when finding the
following special sections:

• logging: The content of this section will be sent directly to logging.config.dictConfig().

• xarray: The content of this section will be sent directly to xarray.set_options().

• xclim: The content of this section will be sent directly to xclim.set_options(). Here goes metadata_locales:
- fr to activate the automatic translation of added attributes, for example.

• warnings: The content of this section must be a simple mapping. The keys are understood as python warning
categories (types) and the values as an action to add to the filter. The key “all” applies the filter to any warnings.
Only built-in warnings are supported.

xscen.config.args_as_str(*args: tuple[Any, ...]) → tuple[str, ...]
Return arguments as strings.

xscen.config.load_config(*elements, reset: bool = False, verbose: bool = False)
Load configuration from given files or key=value pairs.

Once all elements are loaded, special sections are dispatched to their module, but only if the section was changed
by the loaded elements. These special sections are:

• locales : The locales to use when writing metadata in xscen, xclim and figanos. This section must be a list
of 2-char strings.

• logging : Everything passed to logging.config.dictConfig().

• xarray : Passed to xarray.set_options().

• xclim : Passed to xclim.set_options().

• warning : Mappings where the key is a Warning category (or “all”) and the value an action to pass to
warnings.simplefilter().

Parameters

• elements (str) – Files or values to add into the config. If a directory is passed, all .yml
files of this directory are added, in alphabetical order. If a “key=value” string, “key” is a
dotted name and value will be evaluated if possible. “key=value” pairs are set last, after
all files are being processed.

• reset (bool) – If True, the current config is erased before loading files.

• verbose (bool) – if True, each element triggers a INFO log line.

Example

load_config("my_config.yml", "config_dir/", "logging.loggers.xscen.level=DEBUG")

Will load configuration from my_config.yml, then from all yml files in config_dir and then the logging level of
xscen’s logger will be set to DEBUG.

xscen.config.parse_config(func_or_cls)

xscen.config.recursive_update(d, other)
Update a dictionary recursively with another dictionary.

Values that are Mappings are updated recursively as well.

100 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

2.7.14 Script Utilities

A collection of various convenience objects and functions to use in scripts.

exception xscen.scripting.TimeoutException(seconds: int, task: str = '', **kwargs)
An exception raised with a timeout occurs.

class xscen.scripting.measure_time(name: str | None = None, cpu: bool = False, logger: ~logging.Logger
= <Logger xscen.scripting (INFO)>)

Context for timing a code block.

Parameters

• name (str, optional) – A name to give to the block being timed, for meaningful logging.

• cpu (boolean) – If True, the CPU time is also measured and logged.

• logger (logging.Logger, optional) – The logger object to use when sending Info messages
with the measured time. Defaults to a logger from this module.

xscen.scripting.move_and_delete(moving: list[list[str | PathLike]], pcat: ProjectCatalog, deleting: list[str |
PathLike] | None = None, copy: bool = False)

First, move files, then update the catalog with new locations. Finally, delete directories.

This function can be used at the end of for loop in a workflow to clean temporary files.

Parameters

• moving (list of lists of str or os.PathLike) – list of lists of path of files to move, following
the format: [[source 1, destination1], [source 2, destination2],. . . ]

• pcat (ProjectCatalog) – Catalog to update with new destinations

• deleting (list of str or os.PathLike, optional) – list of directories to be deleted including
all contents and recreated empty. E.g. the working directory of a workflow.

• copy (bool, optional) – If True, copy directories instead of moving them.

xscen.scripting.save_and_update(ds: Dataset, pcat: ProjectCatalog, path: str | PathLike | None = None,
file_format: str | None = None, build_path_kwargs: dict | None = None,
save_kwargs: dict | None = None, update_kwargs: dict | None = None)

Construct the path, save and delete.

This function can be used after each task of a workflow.

Parameters

• ds (xr.Dataset) – Dataset to save.

• pcat (ProjectCatalog) – Catalog to update after saving the dataset.

• path (str or os.pathlike, optional) – Path where to save the dataset. If the string con-
tains variables in curly bracket. They will be filled by catalog attributes. If None, the
catutils.build_path fonction will be used to create a path.

• file_format ({‘nc’, ‘zarr’}) – Format of the file. If None, look for the following in order:
build_path_kwargs[‘format’], a suffix in path, ds.attrs[‘cat:format’]. If nothing is found,
it will default to zarr.

• build_path_kwargs (dict, optional) – Arguments to pass to build_path.

• save_kwargs (dict, optional) – Arguments to pass to save_to_netcdf or save_to_zarr.

• update_kwargs (dict, optional) – Arguments to pass to update_from_ds.

2.7. API 101

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.scripting.send_mail(*, subject: str, msg: str, to: str | None = None, server: str = '127.0.0.1', port: int =
25, attachments: list[tuple[str, Figure | PathLike] | Figure | PathLike] | None =
None)→ None

Send email.

Email a single address through a login-less SMTP server. The default values of server and port should work
out-of-the-box on Ouranos’s systems.

Parameters

• subject (str) – Subject line.

• msg (str) – Main content of the email. Can be UTF-8 and multi-line.

• to (str, optional) – Email address to which send the email. If None (default), the email
is sent to “{os.getlogin()}@{os.uname().nodename}”. On unix systems simply put your
real email address in $HOME/.forward to receive the emails sent to this local address.

• server (str) – SMTP server url. Defaults to 127.0.0.1, the local host. This function does
not try to log-in.

• port (int) – Port of the SMTP service on the server. Defaults to 25, which is usually the
default port on unix-like systems.

• attachments (list of paths or matplotlib figures or tuples of a string and a path or figure,
optional) – List of files to attach to the email. Elements of the list can be paths, the mime-
types of those is guessed and the files are read and sent. Elements can also be matplotlib
Figures which are send as png image (savefig) with names like “Figure00.png”. Finally,
elements can be tuples of a filename to use in the email and the attachment, handled as
above.

Returns
None

xscen.scripting.send_mail_on_exit(*, subject: str | None = None, msg_ok: str | None = None, msg_err: str |
None = None, on_error_only: bool = False, skip_ctrlc: bool = True,
**mail_kwargs)→ None

Send an email with content depending on how the system exited.

This function is best used by registering it with atexit. Calls send_mail().

Parameters

• subject (str, optional) – Email subject. Will be appended by “Success”, “No errors” or
“Failure” depending on how the system exits.

• msg_ok (str, optional) – Content of the email if the system exists successfully.

• msg_err (str, optional) – Content of the email id the system exists with a non-zero code or
with an error. The message will be appended by the exit code or with the error traceback.

• on_error_only (boolean) – Whether to only send an email on a non-zero/error exit.

• skip_ctrlc (boolean) – If True (default), exiting with a KeyboardInterrupt will not send
an email.

• mail_kwargs – Other arguments passed to send_mail(). The to argument is necessary
for this function to work.

Returns
None

102 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

Example

Send an eamil titled “Woups” upon non-successful program exit. We assume the to field was given in the config.

>>> import atexit
>>> atexit.register(send_mail_on_exit, subject="Woups", on_error_only=True)

xscen.scripting.skippable(seconds: int = 2, task: str = '', logger: Logger | None = None)
Skippable context manager.

When CTRL-C (SIGINT, KeyboardInterrupt) is sent within the context, this catches it, prints to the log and gives
a timeout during which a subsequent interruption will stop the script. Otherwise, the context exits normally.

This is meant to be used within a loop so that we can skip some iterations:

for i in iterable:
with skippable(2, i):

some_skippable_code()

Parameters

• seconds (int) – Number of seconds to wait for a second CTRL-C.

• task (str) – A name for the skippable task, to have an explicit script.

• logger (logging.Logger, optional) – The logger to use when printing the messages. The
interruption signal is notified with ERROR, while the skipping is notified with INFO. If
not given (default), a brutal print is used.

xscen.scripting.timeout(seconds: int, task: str = '')
Timeout context manager.

Only one can be used at a time, this is not multithread-safe : it cannot be used in another thread than the main
one, but multithreading can be used in parallel.

Parameters

• seconds (int) – Number of seconds after which the context exits with a TimeoutException.
If None or negative, no timeout is set and this context does nothing.

• task (str, optional) – A name to give to the task, allowing a more meaningful exception.

2.7.15 Packaging Utilities

Common utilities to be used in many places.

xscen.utils.add_attr(ds: Dataset | DataArray, attr: str, new: str, **fmt)
Add a formatted translatable attribute to a dataset.

xscen.utils.change_units(ds: Dataset, variables_and_units: dict)→ Dataset
Change units of Datasets to non-CF units.

Parameters

• ds (xr.Dataset) – Dataset to use

• variables_and_units (dict) – Description of the variables and units to output

Returns
xr.Dataset

2.7. API 103

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

See also:

xclim.core.units.convert_units_to, xclim.core.units.rate2amount

xscen.utils.clean_up(ds: Dataset, *, variables_and_units: dict | None = None, convert_calendar_kwargs: dict
| None = None, missing_by_var: dict | None = None, maybe_unstack_dict: dict | None =
None, round_var: dict | None = None, common_attrs_only: dict | list[Dataset | str |
PathLike] | None = None, common_attrs_open_kwargs: dict | None = None,
attrs_to_remove: dict | None = None, remove_all_attrs_except: dict | None = None,
add_attrs: dict | None = None, change_attr_prefix: str | None = None, to_level: str |
None = None)→ Dataset

Clean up of the dataset.

It can:

• convert to the right units using xscen.finalize.change_units

• convert the calendar and interpolate over missing dates

• call the xscen.common.maybe_unstack function

• remove a list of attributes

• remove everything but a list of attributes

• add attributes

• change the prefix of the catalog attrs

in that order.

Parameters

• ds (xr.Dataset) – Input dataset to clean up

• variables_and_units (dict, optional) – Dictionary of variable to convert. eg. {‘tasmax’:
‘degC’, ‘pr’: ‘mm d-1’}

• convert_calendar_kwargs (dict, optional) – Dictionary of arguments to feed to
xclim.core.calendar.convert_calendar. This will be the same for all variables. If miss-
ing_by_vars is given, it will override the ‘missing’ argument given here. Eg. {target’:
default, ‘align_on’: ‘random’}

• missing_by_var (dict, optional) – Dictionary where the keys are the vari-
ables and the values are the argument to feed the missing parameters of
the xclim.core.calendar.convert_calendar for the given variable with the con-
vert_calendar_kwargs. When the value of an entry is ‘interpolate’, the missing
values will be filled with NaNs, then linearly interpolated over time.

• maybe_unstack_dict (dict, optional) – Dictionary to pass to xs-
cen.common.maybe_unstack function. The format should be: {‘coords’:
path_to_coord_file, ‘rechunk’: {‘time’: -1 }, ‘stack_drop_nans’: True}.

• round_var (dict, optional) – Dictionary where the keys are the variables of the dataset
and the values are the number of decimal places to round to

• common_attrs_only (dict, list of datasets, or list of paths, optional) – Dictionnary of
datasets or list of datasets, or path to NetCDF or Zarr files. Keeps only the global attributes
that are the same for all datasets and generates a new id.

• common_attrs_open_kwargs (dict, optional) – Dictionary of arguments for xar-
ray.open_dataset(). Used with common_attrs_only if given paths.

104 Chapter 2. Features

https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.units.convert_units_to
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.units.rate2amount
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• attrs_to_remove (dict, optional) – Dictionary where the keys are the variables and the
values are a list of the attrs that should be removed. For global attrs, use the key ‘global’.
The element of the list can be exact matches for the attributes name or use the same sub-
string matching rules as intake_esm: - ending with a ‘*’ means checks if the substring
is contained in the string - starting with a ‘^’ means check if the string starts with the
substring. eg. {‘global’: [‘unnecessary note’, ‘cell*’], ‘tasmax’: ‘old_name’}

• remove_all_attrs_except (dict, optional) – Dictionary where the keys are the variables
and the values are a list of the attrs that should NOT be removed, all other attributes
will be deleted. If None (default), nothing will be deleted. For global attrs, use the key
‘global’. The element of the list can be exact matches for the attributes name or use the
same substring matching rules as intake_esm: - ending with a ‘*’ means checks if the
substring is contained in the string - starting with a ‘^’ means check if the string starts
with the substring. eg. {‘global’: [‘necessary note’, ‘^cat:’], ‘tasmax’: ‘new_name’}

• add_attrs (dict, optional) – Dictionary where the keys are the variables and the values
are a another dictionary of attributes. For global attrs, use the key ‘global’. eg. {‘global’:
{‘title’: ‘amazing new dataset’}, ‘tasmax’: {‘note’: ‘important info about tasmax’}}

• change_attr_prefix (str, optional) – Replace “cat:” in the catalog global attrs by this new
string

• to_level (str, optional) – The processing level to assign to the output.

Returns
xr.Dataset – Cleaned up dataset

See also:

xclim.core.calendar.convert_calendar

xscen.utils.date_parser(date: str | datetime | Timestamp | datetime | Period, *, end_of_period: bool | str =
False, out_dtype: str = 'datetime', strtime_format: str = '%Y-%m-%d', freq: str =
'H')→ str | Period | Timestamp

Return a datetime from a string.

Parameters

• date (str, cftime.datetime, pd.Timestamp, datetime.datetime, pd.Period) – Date to be con-
verted

• end_of_period (bool or str) – If ‘Y’ or ‘M’, the returned date will be the end of the year
or month that contains the received date. If True, the period is inferred from the date’s
precision, but date must be a string, otherwise nothing is done.

• out_dtype (str) – Choices are ‘datetime’, ‘period’ or ‘str’

• strtime_format (str) – If out_dtype==’str’, this sets the strftime format

• freq (str) – If out_dtype==’period’, this sets the frequency of the period.

Returns
pd.Timestamp, pd.Period, str – Parsed date

xscen.utils.get_cat_attrs(ds: Dataset | DataArray | dict, prefix: str = 'cat:', var_as_str=False)→ dict
Return the catalog-specific attributes from a dataset or dictionary.

Parameters

• ds (xr.Dataset, dict) – Dataset to be parsed. If a dictionary, it is assumed to be the attributes
of the dataset (ds.attrs).

2.7. API 105

https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.calendar.convert_calendar
https://pandas.pydata.org/docs/reference/api/pandas.Timestamp.html#pandas.Timestamp
https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period
https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period
https://pandas.pydata.org/docs/reference/api/pandas.Timestamp.html#pandas.Timestamp
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

• prefix (str) – Prefix automatically generated by intake-esm. With xscen, this should be
‘cat:’

• var_as_str (bool) – If True, ‘variable’ will be returned as a string if there is only one.

Returns
dict – Compilation of all attributes in a dictionary.

xscen.utils.maybe_unstack(ds: Dataset, coords: str | None = None, rechunk: dict | None = None,
stack_drop_nans: bool = False)→ Dataset

If stack_drop_nans is True, unstack and rechunk.

Parameters

• ds (xr.Dataset) – Dataset to unstack.

• coords (str, optional) – Path to a dataset containing the coords to unstack (and only those).

• rechunk (dict, optional) – If not None, rechunk the dataset after unstacking.

• stack_drop_nans (bool) – If True, unstack the dataset and rechunk it. If False, do nothing.

Returns
xr.Dataset – Unstacked dataset.

xscen.utils.minimum_calendar(*calendars)→ str
Return the minimum calendar from a list.

Uses the hierarchy: 360_day < noleap < standard < all_leap, and returns one of those names.

xscen.utils.natural_sort(_list: list[str])
For strings of numbers. alternative to sorted() that detects a more natural order.

e.g. [r3i1p1, r1i1p1, r10i1p1] is sorted as [r1i1p1, r3i1p1, r10i1p1] instead of [r10i1p1, r1i1p1, r3i1p1]

xscen.utils.publish_release_notes(style: str = 'md', file: PathLike | StringIO | TextIO | None = None,
changes: str | PathLike = None)→ str | None

Format release history in Markdown or ReStructuredText.

Parameters

• style ({“rst”, “md”}) – Use ReStructuredText (rst) or Markdown (md) formatting. De-
fault: Markdown.

• file ({os.PathLike, StringIO, TextIO, None}) – If provided, prints to the given file-like
object. Otherwise, returns a string.

• changes ({str, os.PathLike}, optional) – If provided, manually points to the file where the
changelog can be found. Assumes a relative path otherwise.

Returns
str, optional

106 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Notes

This function exists solely for development purposes. Adapted from xclim.testing.utils.publish_release_notes.

xscen.utils.stack_drop_nans(ds: Dataset, mask: DataArray, *, new_dim: str = 'loc', to_file: str | None =
None)→ Dataset

Stack dimensions into a single axis and drops indexes where the mask is false.

Parameters

• ds (xr.Dataset) – A dataset with the same coords as mask.

• mask (xr.DataArray) – A boolean DataArray with True on the points to keep. Mask will
be loaded within this function.

• new_dim (str) – The name of the new stacked dim.

• to_file (str, optional) – A netCDF filename where to write the stacked coords for use in
unstack_fill_nan. If given a string with {shape} and {domain}, the formatting will fill
them with the original shape of the dataset and the global attributes ‘cat:domain’. If None
(default), nothing is written to disk. It is recommended to fill this argument in the config.
It will be parsed automatically. E.g.:

utils:

stack_drop_nans:
to_file: /some_path/coords/coords_{domain}_{shape}.nc

unstack_fill_nan:
coords: /some_path/coords/coords_{domain}_{shape}.nc

Returns
xr.Dataset – Same as ds, but all dimensions of mask have been stacked to a single new_dim.
Indexes where mask is False have been dropped.

See also:

unstack_fill_nan
The inverse operation.

xscen.utils.standardize_periods(periods: list[str] | list[list[str]] | None, multiple: bool = True)→ list[str] |
list[list[str]] | None

Reformats the input to a list of strings, [‘start’, ‘end’], or a list of such lists.

Parameters

• periods (list of str or list of lists of str, optional) – The period(s) to standardize. If None,
return None.

• multiple (bool) – If True, return a list of periods, otherwise return a single period.

xscen.utils.translate_time_chunk(chunks: dict, calendar: str, timesize)→ dict
Translate chunk specification for time into a number.

-1 translates to timesize ‘Nyear’ translates to N times the number of days in a year of calendar calendar.

xscen.utils.unstack_dates(ds: Dataset, seasons: dict[int, str] | None = None, new_dim: str = 'season',
winter_starts_year: bool = False)

Unstack a multi-season timeseries into a yearly axis and a season one.

Parameters

2.7. API 107

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• ds (xr.Dataset or DataArray) – The xarray object with a “time” coordinate. Only sup-
ports monthly or coarser frequencies. The time axis must be complete and regular
(xr.infer_freq(ds.time) doesn’t fail).

• seasons (dict, optional) – A dictionary from month number (as int) to a season name. If
not given, it is guessed from the time coord’s frequency. See notes.

• new_dim (str) – The name of the new dimension.

• winter_starts_year (bool) – If True, the year of winter (DJF) is built from the year of
January, not December. i.e. DJF made from [Dec 1980, Jan 1981, and Feb 1981] will be
associated with the year 1981, not 1980.

Returns
xr.Dataset or DataArray – Same as ds but the time axis is now yearly (AS-JAN) and the seasons
are along the new dimension.

Notes

When season is None, the inferred frequency determines the new coordinate:

• For MS, the coordinates are the month abbreviations in english (JAN, FEB, etc.)

• For ?QS-? and other ?MS frequencies, the coordinates are the initials of the months in each season. Ex:
QS-DEC (with winter_starts_year=True) : DJF, MAM, JJA, SON.

• For YS or AS-JAN, the new coordinate has a single value of “annual”.

• For ?AS-? frequencies, the new coordinate has a single value of “annual-{anchor}”, were “anchor” is the
abbreviation of the first month of the year. Ex: AS-JUL -> “annual-JUL”.

xscen.utils.unstack_fill_nan(ds: Dataset, *, dim: str = 'loc', coords: str | PathLike | Sequence[str |
PathLike] | dict | None = None)

Unstack a Dataset that was stacked by stack_drop_nans().

Parameters

• ds (xr.Dataset) – A dataset with some dims stacked by stack_drop_nans.

• dim (str) – The dimension to unstack, same as new_dim in stack_drop_nans.

• coords (Sequence of strings, Mapping of str to array, str, optional) – If a sequence : if the
dataset has coords along dim that are not original dimensions, those original dimensions
must be listed here. If a dict : a mapping from the name to the array of the coords to
unstack If a str : a filename to a dataset containing only those coords (as coords). If given
a string with {shape} and {domain}, the formatting will fill them with the original shape
of the dataset (that should have been store in the attributes of the stacked dimensions)
by stack_drop_nans and the global attributes ‘cat:domain’. It is recommended to fill this
argument in the config. It will be parsed automatically. E.g.:

utils:

stack_drop_nans:
to_file: /some_path/coords/coords_{domain}_{shape}.nc

unstack_fill_nan:
coords: /some_path/coords/coords_{domain}_{shape}.nc

If None (default), all coords that have dim a single dimension are used as the new dimen-
sions/coords in the unstacked output. Coordinates will be loaded within this function.

108 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Returns
xr.Dataset – Same as ds, but dim has been unstacked to coordinates in coords. Missing ele-
ments are filled according to the defaults of fill_value of xarray.Dataset.unstack().

xscen.utils.update_attr(ds: Dataset | DataArray, attr: str, new: str, others: Sequence[Dataset | DataArray] |
None = None, **fmt)→ Dataset | DataArray

Format an attribute referencing itself in a translatable way.

Parameters

• ds (Dataset or DataArray) – The input object with the attribute to update.

• attr (str) – Attribute name.

• new (str) – New attribute as a template string. It may refer to the old version of the attribute
with the “{attr}” field.

• others (Sequence of Datasets or DataArrays) – Other objects from which we can extract
the attribute attr. These can be referenced as “{attrXX}” in new, where XX is the based-1
index of the other source in others. If they don’t have the attr attribute, an empty string is
sent to the string formatting. See notes.

• fmt – Other formatting data.

Returns
ds, but updated with the new version of attr, in each of the activated languages.

Notes

This is meant for constructing attributes by extending a previous version or combining it from different sources.
For example, given a ds that has long_name=”Variability”:

>>> update_attr(ds, "long_name", _("Mean of {attr}"))

Will update the “long_name” of ds with long_name=”Mean of Variability”. The use of _(. . . ) allows the de-
tection of this string by the translation manager. The function will be able to add a translatable version of the
string for each activated language, for example adding a long_name_fr=”Moyenne de Variabilité” (assuming a
long_name_fr was present on the initial ds).

If the new attribute is an aggregation from multiple sources, these can be passed in others.

>>> update_attr(
... ds0,
... "long_name",
... _("Addition of {attr} and {attr1}, divided by {attr2}"),
... others=[ds1, ds2],
... )

Here, ds0 will have it’s long_name updated with the passed string, where attr1 is the long_name of ds1 and attr2
the long_name of ds2. The process will be repeated for each localized long_name available on ds0. For example,
if ds0 has a long_name_fr, the template string is translated and filled with the long_name_fr attributes of ds0,
ds1 and ds2. If the latter don’t exist, the english version is used instead.

2.7. API 109

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.unstack.html#xarray.Dataset.unstack
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

2.8 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

2.8.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/Ouranosinc/xscen/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

xscen could always use more documentation, whether as part of the official xscen docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Ouranosinc/xscen/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

110 Chapter 2. Features

https://github.com/Ouranosinc/xscen/issues
https://github.com/Ouranosinc/xscen/issues


xscen Documentation, Release 0.7.25-beta

2.8.2 Get Started!

Note: If you are new to using GitHub and git, please read this guide first.

Warning: Anaconda Python users: Due to the complexity of some packages, the default dependency solver can
take a long time to resolve the environment. Consider running the following commands in order to speed up the
process:

$ conda install -n base conda-libmamba-solver
$ conda config --set solver libmamba

For more information, please see the following link: https://www.anaconda.com/blog/
a-faster-conda-for-a-growing-community

Alternatively, you can use the mamba package manager, which is a drop-in replacement for conda. If you are
already using mamba, replace the following commands with mamba instead of conda.

Ready to contribute? Here’s how to set up xscen for local development.

1. Clone the repo locally:

$ git clone git@github.com:Ouranosinc/xscen.git

2. Install your local copy into a development environment. You can create a new Anaconda development environ-
ment with:

$ conda env create -f environment-dev.yml
$ conda activate xscen-dev
$ python -m pip install --editable ".[dev]"

This installs xscen in an “editable” state, meaning that changes to the code are immediately seen by the envi-
ronment.

3. As xscen was installed in editable mode, we also need to compile the translation catalogs manually:

$ make translate

4. To ensure a consistent coding style, install the pre-commit hooks to your local clone:

$ pre-commit install

On commit, pre-commit will check that black, blackdoc, isort, flake8, and ruff checks are passing,
perform automatic fixes if possible, and warn of violations that require intervention. If your commit fails the
checks initially, simply fix the errors, re-add the files, and re-commit.

You can also run the hooks manually with:

$ pre-commit run -a

If you want to skip the pre-commit hooks temporarily, you can pass the --no-verify flag to $ git commit.

5. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

2.8. Contributing 111

https://guides.github.com/activities/hello-world/
https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community
https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community
https://mamba.readthedocs.io/en/latest/index.html


xscen Documentation, Release 0.7.25-beta

Now you can make your changes locally.

6. When you’re done making changes, we strongly suggest running the tests in your environment or with the help
of tox:

$ python -m pytest
# Or, to run multiple build tests
$ tox

Alternatively, you can run the tests using make:

$ make lint
$ make test

Running make lint and make test demands that your runtime/dev environment have all necessary development
dependencies installed.

Warning: Due to some dependencies only being available via Anaconda/conda-forge or built from source,
tox-based testing will only work if ESMF is available in your system path. This also requires that the
ESMF_VERSION environment variable (matching the version of ESMF installed) be accessible within your
shell as well (e.g.: $ export ESMF_VERSION=8.5.0).

7. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

If pre-commit hooks fail, try re-committing your changes (or, if need be, you can skip them with $ git commit
–no-verify).

8. Submit a Pull Request through the GitHub website.

9. When pushing your changes to your branch on GitHub, the documentation will automatically be tested to reflect
the changes in your Pull Request. This build process can take several minutes at times. If you are actively making
changes that affect the documentation and wish to save time, you can compile and test your changes beforehand
locally with:

# To generate the html and open it in your browser
$ make docs
# To only generate the html
$ make autodoc
$ make -C docs html
# To simply test that the docs pass build checks
$ tox -e docs

Note: When building the documentation, the default behaviour is to evaluate notebooks (‘nbsphinx_execute =
“always”’), rather than simply parse the content (‘nbsphinx_execute = “never”’). Due to their complexity, this
can sometimes be a very computationally demanding task and should only be performed when necessary (i.e.:
when the notebooks have been modified).

In order to speed up documentation builds, setting a value for the environment variable “SKIP_NOTEBOOKS”
(e.g. “$ export SKIP_NOTEBOOKS=1”) will prevent the notebooks from being evaluated on all subsequent “$
tox -e docs” or “$ make docs” invocations.

112 Chapter 2. Features

http://earthsystemmodeling.org/download/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request


xscen Documentation, Release 0.7.25-beta

10. Once your Pull Request has been accepted and merged to the main branch, several automated workflows will be
triggered:

• The bump-version.yml workflow will automatically bump the patch version when pull requests are
pushed to the main branch on GitHub. It is not recommended to manually bump the version in your
branch when merging (non-release) pull requests (this will cause the version to be bumped twice).

• ReadTheDocs will automatically build the documentation and publish it to the latest branch of xscen doc-
umentation website.

• If your branch is not a fork (ie: you are a maintainer), your branch will be automatically deleted.

You will have contributed your first changes to xscen!

Translating xscen

If your additions to xscen play with plain text attributes like “long_name” or “description”, you should also provide
French translations for those fields. To manage translations, xscen uses python’s gettext with the help of babel.

To update an attribute while enabling translation, use utils.add_attr() instead of a normal set-item. For example:

ds.attrs["description"] = "The English description"

becomes:

from xscen.utils import add_attr

def _(s):
return s

add_attr(ds, "description", _("English description of {a}"), a="var")

See also update_attr() for the special case where an attribute is updated using its previous version.

Once the code is implemented and translatable strings are marked as such, we need to extract them and catalog them
in the French translation map. From the root directory of xscen, run:

$ make findfrench

Then go edit xscen/xscen/data/fr/LC_MESSAGES/xscen.po with the correct French translations. Finally, run-
ning:

$ make translate

This will compile the edited catalogs, allowing python to detect and use them.

2.8. Contributing 113



xscen Documentation, Release 0.7.25-beta

2.8.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests and should aim to provide code coverage for all new lines of code. You can
use the --cov-report html --cov xscen flags during the call to pytest to generate an HTML report and
analyse the current test coverage.

2. If the pull request adds functionality, the docs should also be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should not break the templates.

4. The pull request should work for Python 3.9, 3.10, and 3.11. Check that the tests pass for all supported Python
versions.

2.8.4 Tips

To run a subset of tests:

$ pytest tests.test_xscen

To run specific code style checks:

$ black --check xscen tests
$ isort --check xscen tests
$ blackdoc --check xscen docs
$ ruff xscen tests
$ flake8 xscen tests

To get black, isort ``blackdoc, ruff, and flake8 (with plugins flake8-alphabetize and
flake8-rst-docstrings) simply install them with pip (or conda) into your environment.

2.8.5 Versioning/Tagging

A reminder for the maintainers on how to deploy. This section is only relevant when producing a new point release
for the package.

Warning: It is important to be aware that any changes to files found within the xscen folder (with the exception of
xscen/__init__.py) will trigger the bump-version.yml workflow. Be careful not to commit changes to files
in this folder when preparing a new release.

1. Create a new branch from main (e.g. release-0.2.0).

2. Update the CHANGES.rst file to change the Unreleased section to the current date.

3. Bump the version in your branch to the next version (e.g. v0.1.0 -> v0.2.0):

.. code-block:: shell

$ bump-my-version bump minor # In most cases, we will be releasing a minor␣
→˓version

$ git push

4. Create a pull request from your branch to main.

114 Chapter 2. Features

https://en.wikipedia.org/wiki/Code_coverage


xscen Documentation, Release 0.7.25-beta

5. Once the pull request is merged, create a new release on GitHub. On the main branch, run:

$ git tag v0.2.0
$ git push --tags

This will trigger a GitHub workflow to build the package and upload it to TestPyPI. At the same time, the GitHub
workflow will create a draft release on GitHub. Assuming that the workflow passes, the final release can then be
published on GitHub by finalizing the draft release.

6. Once the release is published, the publish-pypi.yml workflow will go into an awaiting approval mode on Github
Actions. Only authorized users may approve this workflow (notifications will be sent) to trigger the upload to
PyPI.

Warning: Uploads to PyPI can never be overwritten. If you make a mistake, you will need to bump the version
and re-release the package. If the package uploaded to PyPI is broken, you should modify the GitHub release to
mark the package as broken, as well as yank the package (mark the version “broken”) on PyPI.

2.8.6 Packaging

When a new version has been minted (features have been successfully integrated test coverage and stability is adequate),
maintainers should update the pip-installable package (wheel and source release) on PyPI as well as the binary on
conda-forge.

The simple approach

The simplest approach to packaging for general support (pip wheels) requires the following packages installed:

• build

• setuptools

• twine

• wheel

From the command line on your Linux distribution, simply run the following from the clone’s main dev branch:

# To build the packages (sources and wheel)
$ python -m build --sdist --wheel

# To upload to PyPI
$ twine upload dist/*

2.9 Credits

2.9.1 Development Lead

• Gabriel Rondeau-Genesse <rondeau-genesse.gabriel@ouranos.ca> @RondeauG

2.9. Credits 115

mailto:rondeau-genesse.gabriel@ouranos.ca
https://github.com/RondeauG


xscen Documentation, Release 0.7.25-beta

2.9.2 Co-Developers

• Pascal Bourgault <bourgault.pascal@ouranos.ca> @aulemahal

• Juliette Lavoie <lavoie.juliette@ouranos.ca> @juliettelavoie

• Trevor James Smith <smith.trevorj@ouranos.ca> @Zeitsperre

2.9.3 Contributors

• Travis Logan <logan.travis@ouranos.ca> @tlogan2000

• Louis-Philippe Caron <caron.louis-philippe@ouranos.ca>

• Sarah Gammon <gammon.sarah@ouranos.ca> @SarahG-579462

• Yannick Rousseau

• Marco Braun <Braun.Marco@ouranos.ca> @vindelico

• Sarah-Claude Bourdeau-Goulet <bourdeau-goulet.sarah-claude@ouranos.ca> @sarahclaude

2.10 Changelog

2.10.1 v0.8.0 (unreleased)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Pascal Bourgault (@aulemahal), Juliette Lavoie
(@juliettelavoie), Sarah-Claude Bourdeau-Goulet (@sarahclaude), Trevor James Smith (@Zeitsperre), Marco Braun
(@vindelico).

Announcements

• xscen now adheres to PEPs 517/518/621 using the setuptools and setuptools-scm backend for building and pack-
aging. (PR/292).

New features and enhancements

• New function xscen.indicators.select_inds_for_avail_vars to filter the indicators that can be calcu-
lated with the variables available in a xarray.Dataset. (PR/291).

• Replaced aggregation function climatological_mean() with climatological_op() offering more types
of operations to aggregate over climatological periods. (PR/290)

• Added the ability to search for simulations that reach a given warming level. (PR/251).

• xs.spatial_mean now accepts the region="global" keyword to perform a global average (GH/94, PR/260).

• xs.spatial_mean with method='xESMF' will also automatically segmentize polygons (down to a 1° resolu-
tion) to ensure a correct average (PR/260).

• Added documentation for require_all_on in search_data_catalogs. (PR/263).

• xs.save_to_table and xs.io.to_table to transform datasets and arrays to DataFrames, but with support
for multi-columns, multi-sheets and localized table of content generation.

• Better xs.extract.resample : support for weighted resampling operations when starting with frequencies
coarser than daily and missing timesteps/values handling. (GH/80, GH/93, PR/265).

116 Chapter 2. Features

mailto:bourgault.pascal@ouranos.ca
https://github.com/aulemahal
mailto:lavoie.juliette@ouranos.ca
https://github.com/juliettelavoie
mailto:smith.trevorj@ouranos.ca
https://github.com/Zeitsperre
mailto:logan.travis@ouranos.ca
https://github.com/tlogan2000
mailto:caron.louis-philippe@ouranos.ca
mailto:gammon.sarah@ouranos.ca
https://github.com/SarahG-579462
mailto:Braun.Marco@ouranos.ca
https://github.com/vindelico
mailto:bourdeau-goulet.sarah-claude@ouranos.ca
https://github.com/sarahclaude
https://github.com/RondeauG
https://github.com/aulemahal
https://github.com/juliettelavoie
https://github.com/sarahclaude
https://github.com/Zeitsperre
https://github.com/vindelico
https://github.com/Ouranosinc/xscen/pull/292
https://github.com/Ouranosinc/xscen/pull/291
https://github.com/Ouranosinc/xscen/pull/290
https://github.com/Ouranosinc/xscen/pull/251
https://github.com/Ouranosinc/xscen/issues/94
https://github.com/Ouranosinc/xscen/pull/260
https://github.com/Ouranosinc/xscen/pull/260
https://github.com/Ouranosinc/xscen/pull/263
https://github.com/Ouranosinc/xscen/issues/80
https://github.com/Ouranosinc/xscen/issues/93
https://github.com/Ouranosinc/xscen/pull/265


xscen Documentation, Release 0.7.25-beta

• New argument attribute_weights to generate_weights to allow for custom weights. (PR/252).

• xs.io.round_bits to round floating point variable up to a number of bits, allowing for a better compres-
sion. This can be combined with the saving step through argument "bitround" of save_to_netcdf and
save_to_zarr. (PR/266).

• Added annual global tas timeseries for CMIP6’s models CMCC-ESM2 (ssp245, ssp370, ssp585), EC-Earth3-
CC (ssp245, ssp585), KACE-1-0-G (ssp245, ssp370, ssp585) and TaiESM1 (ssp245, ssp370). Moved global tas
database to a netCDF file. (GH/268, PR/270).

• Implemented support for multiple levels and models in xs.subset_warming_level. Better support for
DataArray and DataFrame in xs.get_warming_level. (PR/270).

• Added the ability to directly provide an ensemble dataset to xs.ensemble_stats. (PR/299).

• Added support in xs.ensemble_stats for the new robustness-related functions available in xclim. (PR/299).

• New function xs.ensembles.get_partition_input (PR/289).

Breaking changes

• climatological_mean() has been replaced with climatological_op() and will be abandoned in a future
version. (PR/290)

• experiment_weights argument in generate_weights was renamed to balance_experiments. (PR/252).

• New argument attribute_weights to generate_weights to allow for custom weights. (PR/252).

• For a sequence of models, the output of xs.get_warming_level is now a list. Revert to a dictionary with
output='selected' (PR/270).

• The global average temperature database is now a netCDF, custom databases must follow the same format
(PR/270).

Bug fixes

• Fixed a bug in xs.search_data_catalogs when searching for fixed fields and specific experiments/members.
(PR/251).

• Fixed a bug in the documentation build configuration that prevented stable/latest and tagged documentation builds
from resolving on ReadTheDocs. (PR/256).

• Fixed get_warming_level to avoid incomplete matches. (PR/269).

• search_data_catalogs now eliminates anything that matches any entry in exclusions. (GH/275, PR/280).

• Fixed a bug in xs.scripting.save_and_update where build_path_kwargs was ignored when trying to
guess the file format. (PR/282).

• Add a warning to xs.extract._dispatch_historical_to_future. (GH/286, PR/287).

• Modify use_cftime for the calendar conversion in to_dataset. (GH/303, PR/289).

2.10. Changelog 117

https://github.com/Ouranosinc/xscen/pull/252
https://github.com/Ouranosinc/xscen/pull/266
https://github.com/Ouranosinc/xscen/issues/268
https://github.com/Ouranosinc/xscen/pull/270
https://github.com/Ouranosinc/xscen/pull/270
https://github.com/Ouranosinc/xscen/pull/299
https://github.com/Ouranosinc/xscen/pull/299
https://github.com/Ouranosinc/xscen/pull/289
https://github.com/Ouranosinc/xscen/pull/290
https://github.com/Ouranosinc/xscen/pull/252
https://github.com/Ouranosinc/xscen/pull/252
https://github.com/Ouranosinc/xscen/pull/270
https://github.com/Ouranosinc/xscen/pull/270
https://github.com/Ouranosinc/xscen/pull/251
https://github.com/Ouranosinc/xscen/pull/256
https://github.com/Ouranosinc/xscen/pull/269
https://github.com/Ouranosinc/xscen/issues/275
https://github.com/Ouranosinc/xscen/pull/280
https://github.com/Ouranosinc/xscen/pull/282
https://github.com/Ouranosinc/xscen/issues/286
https://github.com/Ouranosinc/xscen/pull/287
https://github.com/Ouranosinc/xscen/issues/303
https://github.com/Ouranosinc/xscen/pull/289


xscen Documentation, Release 0.7.25-beta

Internal changes

• Continued work on adding tests. (PR/251).

• Fixed pre-commit’s pretty-format-json hook so that it ignores notebooks. (PR/254).

• Fixed the labeler so docs/CI isn’t automatically added for contributions by new collaborators. (PR/254).

• Made it so that tests are no longer treated as an installable package. (PR/248).

• Renamed the pytest marker from requires_docs to requires_netcdf. (PR/248).

• Included the documentation in the source distribution, while excluding the NetCDF files. (PR/248).

• Reduced the size of the files in /docs/notebooks/samples and changed the notebooks and tests accordingly.
(GH/247, PR/248).

• Added a new xscen.testing module with the datablock_3d function previously located in /tests/conftest.py.
(PR/248).

• New function xscen.testing.fake_data to generate fake data for testing. (PR/248).

• xESMF 0.8 Regridder and SpatialAverager argument out_chunks is now accepted by xs.regrid_dataset
and xs.spatial_mean. (PR/260).

• Testing, Packaging, and CI adjustments. (PR/274):

– xscen builds now install in a tox environment with conda-provided ESMF in GitHub Workflows.

– tox now offers a method for installing esmpy from a tag/branch (via ESMF_VERSION environment
variable).

– $ make translate is now called on ReadTheDocs and within tox.

– Linters are now called by order of most common failures first, to speed up the CI.

– Manifest.in is much more specific about what is installed.

– Re-adds a dev recipe to the setup.py.

• Multiple improvements to the docstrings and type annotations. (PR/282).

• pip check in conda builds in GitHub workflows have been temporarily set to always pass. (PR/288).

• The cookiecutter template has been updated to the latest commit via cruft. (PR/292):

– setup.py has been mostly hollowed-out, save for the babel-related translation function.

– pyproject.toml has been added, with most package configurations migrated into it.

– HISTORY.rst has been renamed to CHANGES.rst.

– actions-version-updater.yml has been added to automate the versioning of the package.

– pre-commit hooks have been updated to the latest versions; check-toml and toml-sort have been
added to cleanup the pyproject.toml file, and check-json-schema has been added to ensure GitHub
and ReadTheDocs workflow files are valid.

– ruff has been added to the linting tools to replace most flake8 and pydocstyle verifications.

– tox builds are more pure Python environment/PyPI-friendly.

– xscen now uses Trusted Publishing for TestPyPI and PyPI uploads.

• Linting checks now examine the testing folder, function complexity, and alphabetical order of __all__ lists.
(PR/292).

• publish_release_notes now uses better logic for finding and reformatting the CHANGES.rst file. (PR/292).

118 Chapter 2. Features

https://github.com/Ouranosinc/xscen/pull/251
https://github.com/Ouranosinc/xscen/pull/254
https://github.com/Ouranosinc/xscen/pull/254
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/issues/247
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/pull/248
https://github.com/Ouranosinc/xscen/pull/260
https://github.com/Ouranosinc/xscen/pull/274
https://github.com/Ouranosinc/xscen/pull/282
https://github.com/Ouranosinc/xscen/pull/288
https://github.com/Ouranosinc/xscen/pull/292
https://github.com/Ouranosinc/xscen/pull/292
https://github.com/Ouranosinc/xscen/pull/292


xscen Documentation, Release 0.7.25-beta

• bump2version version-bumping utility was replaced by bump-my-version. (PR/292).

• Documentation build checks no longer fail due to broken external links; Notebooks are now nested and numbered.
(PR/304).

2.10.2 v0.7.1 (2023-08-23)

• Update dependencies by removing pygeos, pinning shapely>=2 and intake-esm>=2023.07.07 as well as
other small fixes to the environment files. (PR/243).

• Fix xs.aggregate.spatial_mean with method cos-lat when the data is on a rectilinear grid. (PR/243).

Internal changes

• Added a workflow that removes obsolete GitHub Workflow caches from merged pull requests. (PR/250).

• Added a workflow to perform automated labeling of pull requests, dependent on the files changed. (PR/250).

2.10.3 v0.7.0 (2023-08-22)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Pascal Bourgault (@aulemahal), Trevor James
Smith (@Zeitsperre), Juliette Lavoie (@juliettelavoie), Marco Braun (@vindelico).

Announcements

• Dropped support for Python 3.8, added support for 3.11. (PR/199, PR/222).

• xscen is now available on conda-forge, and can be installed with conda install -c conda-forge xscen.
(PR/241)

New features and enhancements

• xscen now tracks code coverage using coveralls. (PR/187).

• New function get_warming_level to search within the IPCC CMIP global temperatures CSV without requiring
data. (GH/208, PR/210).

• File re-structuration from catalogs with xscen.catutils.build_path. (PR/205, PR/237).

• New scripting functions save_and_update and move_and_delete. (PR/214).

• Spatial dimensions can be generalized as X/Y when rechunking and will be mapped to rlon/rlat or lon/lat accord-
ingly. (PR/221).

• New argument var_as_string for get_cat_attrs to return variable names as strings. (PR/233).

• New argument copy for move_and_delete. (PR/233).

• New argument restrict_year for compute_indicators. (PR/233).

• Add more comments in the template. (PR/233, GH/232).

• generate_weights now allows to split weights between experiments, and make them vary along the
time/horizon axis. (GH/108, PR/231).

• New independence_level, institution, added to generate_weights. (PR/231).

• Updated produce_horizon so it can accept multiple periods or warming levels. (PR/231, PR/240).

2.10. Changelog 119

https://github.com/Ouranosinc/xscen/pull/292
https://github.com/Ouranosinc/xscen/pull/304
https://github.com/Ouranosinc/xscen/pull/243
https://github.com/Ouranosinc/xscen/pull/243
https://github.com/Ouranosinc/xscen/pull/250
https://github.com/Ouranosinc/xscen/pull/250
https://github.com/RondeauG
https://github.com/aulemahal
https://github.com/Zeitsperre
https://github.com/juliettelavoie
https://github.com/vindelico
https://github.com/Ouranosinc/xscen/pull/199
https://github.com/Ouranosinc/xscen/pull/222
https://anaconda.org/conda-forge/xscen
https://github.com/Ouranosinc/xscen/pull/241
https://coveralls.io/
https://github.com/Ouranosinc/xscen/pull/187
https://github.com/Ouranosinc/xscen/issues/208
https://github.com/Ouranosinc/xscen/pull/210
https://github.com/Ouranosinc/xscen/pull/205
https://github.com/Ouranosinc/xscen/pull/237
https://github.com/Ouranosinc/xscen/pull/214
https://github.com/Ouranosinc/xscen/pull/221
https://github.com/Ouranosinc/xscen/pull/233
https://github.com/Ouranosinc/xscen/pull/233
https://github.com/Ouranosinc/xscen/pull/233
https://github.com/Ouranosinc/xscen/pull/233
https://github.com/Ouranosinc/xscen/issues/232
https://github.com/Ouranosinc/xscen/issues/108
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/240


xscen Documentation, Release 0.7.25-beta

• Add more comments in the template. (PR/233, PR/235, GH/232).

• New function diagnostics.health_checks that can perform multiple checkups on a dataset. (PR/238).

Breaking changes

• Columns date_start and date_end now use a datetime64[ms] dtype. (PR/222).

• The default output of date_parser is now pd.Timestamp (output_dtype='datetime'). (PR/222).

• date_parser(date, end_of_period=True) has time “23:59:59”, instead of “23:00”. (PR/222, PR/237).

• driving_institution was removed from the “default” xscen columns. (PR/222).

• Folder parsing utilities (parse_directory) moved to xscen.catutils. Signature changed : globpattern
removed, dirglob added, new patterns specifications. See doc for all changes. (PR/205).

• compute_indicators now returns all outputs produced by indicators with multiple outputs (such as
rain_season). (PR/228).

• In generate_weights, independence_level all was renamed model. (PR/231).

• In response to a bugfix, results for generate_weights(independence_level='GCM') are significantly al-
tered. (GH/230, PR/231).

• Legacy support for stats_kwargs in ensemble_stats was dropped. (PR/231).

• period in produce_horizon has been deprecated and replaced with periods. (PR/231).

• Some automated to_level were updated to reflect more recent changes. (PR/231).

• Removed diagnostics.fix_unphysical_values. (PR/238).

Bug fixes

• Fix bug in unstack_dates with seasonal climatological mean. (GH/202, PR/202).

• Added NotImplemented errors when trying to call climatological_mean and compute_deltas with daily data.
(PR/187).

• Minor documentation fixes. (GH/223, PR/225).

• Fixed a bug in unstack_dates where it failed for anything other than seasons. (PR/228).

• cleanup with common_attrs_only now works even when no cat attribute is present in the datasets. (PR/231).

Internal changes

• Removed the pin on xarray’s version. (GH/175, PR/199).

• Folder parsing utilities now in pure python, platform independent. New dependency parse. (PR/205).

• Updated ReadTheDocs configuration to prevent --eager installation of xscen (PR/209).

• Implemented a template to be used for unit tests. (PR/187).

• Updated GitHub Actions to remove deprecation warnings. (PR/187).

• Updated the cookiecutter used to generate boilerplate documentation and code via cruft. (PR/212).

• A few changes to subset_warming_level so it doesn’t need driving_institution. (PR/215).

• Added more tests. (PR/228).

120 Chapter 2. Features

https://github.com/Ouranosinc/xscen/pull/233
https://github.com/Ouranosinc/xscen/pull/235
https://github.com/Ouranosinc/xscen/issues/232
https://github.com/Ouranosinc/xscen/pull/238
https://github.com/Ouranosinc/xscen/pull/222
https://github.com/Ouranosinc/xscen/pull/222
https://github.com/Ouranosinc/xscen/pull/222
https://github.com/Ouranosinc/xscen/pull/237
https://github.com/Ouranosinc/xscen/pull/222
https://github.com/Ouranosinc/xscen/pull/205
https://github.com/Ouranosinc/xscen/pull/228
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/issues/230
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/pull/238
https://github.com/Ouranosinc/xscen/issues/202
https://github.com/Ouranosinc/xscen/pull/202
https://github.com/Ouranosinc/xscen/pull/187
https://github.com/Ouranosinc/xscen/issues/223
https://github.com/Ouranosinc/xscen/pull/225
https://github.com/Ouranosinc/xscen/pull/228
https://github.com/Ouranosinc/xscen/pull/231
https://github.com/Ouranosinc/xscen/issues/175
https://github.com/Ouranosinc/xscen/pull/199
https://github.com/Ouranosinc/xscen/pull/205
https://github.com/Ouranosinc/xscen/pull/209
https://github.com/Ouranosinc/xscen/pull/187
https://github.com/Ouranosinc/xscen/pull/187
https://github.com/Ouranosinc/xscen/pull/212
https://github.com/Ouranosinc/xscen/pull/215
https://github.com/Ouranosinc/xscen/pull/228


xscen Documentation, Release 0.7.25-beta

• In compute_indicators, the logic to manage indicators returning multiple outputs was simplified. (PR/228).

2.10.4 v0.6.0 (2023-05-04)

Contributors to this version: Trevor James Smith (@Zeitsperre), Juliette Lavoie (@juliettelavoie), Pascal Bourgault
(@aulemahal), Gabriel Rondeau-Genesse (@RondeauG).

Announcements

• xscen is now offered as a conda package available through Anaconda.org. Refer to the installation documentation
for more information. (GH/149, PR/171).

• Deprecation: Release 0.6.0 of xscen will be the last version to support xscen.extract.clisops_subset. Use
xscen.spatial.subset instead. (PR/182, PR/184).

• Deprecation: The argument region, used in multiple functions, has been slightly reformatted. Release 0.6.0 of
xscen will be the last version to support the old format. (GH/99, GH/101, PR/184).

New features and enhancements

• New ‘cos-lat’ averaging in spatial_mean. (GH/94, PR/125).

• Support for computing anomalies in compute_deltas. (PR/165).

• Add function diagnostics.measures_improvement_2d. (PR/167).

• Add function regrid.create_bounds_rotated_pole and automatic use in regrid_dataset and
spatial_mean. This is temporary, while we wait for a functionning method in cf_xarray. (PR/174, GH/96).

• Add spatial submodule with functions creep_weights and creep_fill for filling NaNs using neighbours.
(PR/174).

• Allow passing GeoDataFrame instances in spatial_mean’s region argument, not only geospatial file paths.
(PR/174).

• Allow searching for periods in catalog.search. (GH/123, PR/170).

• Allow searching and extracting multiple frequencies for a given variable. (GH/168, PR/170).

• New masking feature in extract_dataset. (GH/180, PR/182).

• New function xs.spatial.subset to replace xs.extract.clisops_subset and add method “sel”.
(GH/180, PR/182).

• Add long_name attribute to diagnostics. ( PR/189).

• Added a new YAML-centric notebook (GH/8, PR/191).

• New utils.standardize_periods to standardize that argument across multiple functions. (GH/87, PR/192).

• New coverage_kwargs argument added to search_data_catalogs to allow modifying the default values of
subset_file_coverage. (GH/87, PR/192).

2.10. Changelog 121

https://github.com/Ouranosinc/xscen/pull/228
https://github.com/Zeitsperre
https://github.com/juliettelavoie
https://github.com/aulemahal
https://github.com/RondeauG
https://github.com/Ouranosinc/xscen/issues/149
https://github.com/Ouranosinc/xscen/pull/171
https://github.com/Ouranosinc/xscen/pull/182
https://github.com/Ouranosinc/xscen/pull/184
https://github.com/Ouranosinc/xscen/issues/99
https://github.com/Ouranosinc/xscen/issues/101
https://github.com/Ouranosinc/xscen/pull/184
https://github.com/Ouranosinc/xscen/issues/94
https://github.com/Ouranosinc/xscen/pull/125
https://github.com/Ouranosinc/xscen/pull/165
https://github.com/Ouranosinc/xscen/pull/167
https://github.com/Ouranosinc/xscen/pull/174
https://github.com/Ouranosinc/xscen/issues/96
https://github.com/Ouranosinc/xscen/pull/174
https://github.com/Ouranosinc/xscen/pull/174
https://github.com/Ouranosinc/xscen/issues/123
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/issues/168
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/issues/180
https://github.com/Ouranosinc/xscen/pull/182
https://github.com/Ouranosinc/xscen/issues/180
https://github.com/Ouranosinc/xscen/pull/182
https://github.com/Ouranosinc/xscen/pull/189
https://github.com/Ouranosinc/xscen/issues/8
https://github.com/Ouranosinc/xscen/pull/191
https://github.com/Ouranosinc/xscen/issues/87
https://github.com/Ouranosinc/xscen/pull/192
https://github.com/Ouranosinc/xscen/issues/87
https://github.com/Ouranosinc/xscen/pull/192


xscen Documentation, Release 0.7.25-beta

Breaking changes

• ‘mean’ averaging has been deprecated in spatial_mean. (PR/125).

• ‘interp_coord’ has been renamed to ‘interp_centroid’ in spatial_mean. (PR/125).

• The ‘datasets’ dimension of the output of diagnostics.measures_heatmap is renamed ‘realization’.
(PR/167).

• _subset_file_coverage was renamed subset_file_coverage and moved to catalog.py to prevent circular imports.
(PR/170).

• extract_dataset doesn’t fail when a variable is in the dataset, but not variables_and_freqs. (PR/185).

• The argument period, used in multiple function, is now always a single list, while periods is more flexible.
(GH/87, PR/192).

• The parameters reference_period and simulation_period of xscen.train and xscen.adjust were renamed
period/periods to respect the point above. (GH/87, PR/192).

Bug fixes

• Forbid pandas v1.5.3 in the environment files, as the linux conda build breaks the data catalog parser. (GH/161,
PR/162).

• Only return requested variables when using DataCatalog.to_dataset. (PR/163).

• compute_indicators no longer crashes if less than 3 timesteps are produced. (PR/125).

• xarray is temporarily pinned below v2023.3.0 due to an API-breaking change. (GH/175, PR/173).

• xscen.utils.unstack_fill_nan` can now handle datasets that have non dimension coordinates. (GH/156, PR/175).

• extract_dataset now skips a simulation way earlier if the frequency doesn’t match. (PR/170).

• extract_dataset now correctly tries to extract in reverse timedelta order. (PR/170).

• compute_deltas no longer creates all NaN values if the input dataset is in a non-standard calendar. (PR/188).

Internal changes

• xscen now manages packaging for PyPi and TestPyPI via GitHub workflows. (PR/159).

• Pre-load coordinates in extract.clisops_subset (PR/163).

• Minimal documentation for templates. (PR/163).

• xscen is now indexed in Zenodo, under the ouranos community of projects. (PR/164).

• Added a few relevant Shields to the README.rst. (PR/164).

• Better warning messages in _subset_file_coverage when coverage is insufficient. (PR/125).

• The top-level Makefile now includes a linkcheck recipe, and the ReadTheDocs configuration no longer reinstalls
the llvmlite compiler library. (PR/173).

• The checkups on coverage and duplicates can now be skipped in subset_file_coverage. (PR/170).

• Changed the ProjectCatalog docstrings to make it more obvious that it needs to be created empty. (GH/99,
PR/184).

• Added parse_config to creep_fill, creep_weights, and reduce_ensemble (PR/191).

122 Chapter 2. Features

https://github.com/Ouranosinc/xscen/pull/125
https://github.com/Ouranosinc/xscen/pull/125
https://github.com/Ouranosinc/xscen/pull/167
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/pull/185
https://github.com/Ouranosinc/xscen/issues/87
https://github.com/Ouranosinc/xscen/pull/192
https://github.com/Ouranosinc/xscen/issues/87
https://github.com/Ouranosinc/xscen/pull/192
https://github.com/Ouranosinc/xscen/issues/161
https://github.com/Ouranosinc/xscen/pull/162
https://github.com/Ouranosinc/xscen/pull/163
https://github.com/Ouranosinc/xscen/pull/125
https://github.com/Ouranosinc/xscen/issues/175
https://github.com/Ouranosinc/xscen/pull/173
https://github.com/Ouranosinc/xscen/issues/156
https://github.com/Ouranosinc/xscen/pull/175
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/pull/188
https://github.com/Ouranosinc/xscen/pull/159
https://github.com/Ouranosinc/xscen/pull/163
https://github.com/Ouranosinc/xscen/pull/163
https://zenodo.org/
https://github.com/Ouranosinc/xscen/pull/164
https://shields.io/
https://github.com/Ouranosinc/xscen/pull/164
https://github.com/Ouranosinc/xscen/pull/125
https://github.com/Ouranosinc/xscen/pull/173
https://github.com/Ouranosinc/xscen/pull/170
https://github.com/Ouranosinc/xscen/issues/99
https://github.com/Ouranosinc/xscen/pull/184
https://github.com/Ouranosinc/xscen/pull/191


xscen Documentation, Release 0.7.25-beta

2.10.5 v0.5.0 (2023-02-28)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Juliette Lavoie (@juliettelavoie), Trevor James
Smith (@Zeitsperre), Sarah Gammon (@SarahG-579462) and Pascal Bourgault (@aulemahal).

New features and enhancements

• Possibility of excluding variables read from file from the catalog produced by parse_directory. (PR/107).

• New functions extract.subset_warming_level and aggregate.produce_horizon. (PR/93).

• add round_var to xs.clean_up. (PR/93).

• New “timeout_cleanup” option for save_to_zarr, which removes variables that were in the process of being
written when receiving a TimeoutException. (PR/106).

• New scripting.skippable context, allowing the use of CTRL-C to skip code sections. (PR/106).

• Possibility of fields with underscores in the patterns of parse_directory. (PR/111).

• New utils.show_versions function for printing or writing to file the dependency versions of xscen. (GH/109,
PR/112).

• Added previously private notebooks to the documentation. (PR/108).

• Notebooks are now tested using pytest with nbval. (PR/108).

• New restrict_warming_level argument for extract.search_data_catalogs to filter dataset that are not
in the warming level csv. (GH/105, PR/138).

• Set configuration value programmatically through CONFIG.set. (PR/144).

• New to_dataset method on DataCatalog. The same as to_dask, but exposing more aggregation options.
(PR/147).

• New templates folder with one general template. (GH/151, PR/158).

Breaking changes

• Functions that are called internally can no longer parse the configuration. (PR/133).

Bug fixes

• clean_up now converts the calendar of variables that use “interpolate” in “missing_by_var” at the same
time.

– Hence, when it is a conversion from a 360_day calendar, the random dates are the same for all of the
these variables. (GH/102, PR/104).

• properties_and_measures no longer casts month coordinates to string. (PR/106).

• search_data_catalogs no longer crashes if it finds nothing. (GH/42, PR/92).

• Prevented fixed fields from being duplicated during _dispatch_historical_to_future (GH/81, PR/92).

• Added missing parse_config to functions in reduce.py (PR/92).

• Added deepcopy before skipna is popped in spatial_mean (PR/92).

• subset_warming_level now validates that the data exists in the dataset provided (GH/117, PR/119).

• Adapt stack_drop_nan for the newest version of xarray (2022.12.0). (GH/122, PR/126).

2.10. Changelog 123

https://github.com/RondeauG
https://github.com/juliettelavoie
https://github.com/Zeitsperre
https://github.com/SarahG-579462
https://github.com/aulemahal
https://github.com/Ouranosinc/xscen/pull/107
https://github.com/Ouranosinc/xscen/pull/93
https://github.com/Ouranosinc/xscen/pull/93
https://github.com/Ouranosinc/xscen/pull/106
https://github.com/Ouranosinc/xscen/pull/106
https://github.com/Ouranosinc/xscen/pull/111
https://github.com/Ouranosinc/xscen/issues/109
https://github.com/Ouranosinc/xscen/pull/112
https://github.com/Ouranosinc/xscen/pull/108
https://github.com/Ouranosinc/xscen/pull/108
https://github.com/Ouranosinc/xscen/issues/105
https://github.com/Ouranosinc/xscen/pull/138
https://github.com/Ouranosinc/xscen/pull/144
https://github.com/Ouranosinc/xscen/pull/147
https://github.com/Ouranosinc/xscen/issues/151
https://github.com/Ouranosinc/xscen/pull/158
https://github.com/Ouranosinc/xscen/pull/133
https://github.com/Ouranosinc/xscen/issues/102
https://github.com/Ouranosinc/xscen/pull/104
https://github.com/Ouranosinc/xscen/pull/106
https://github.com/Ouranosinc/xscen/issues/42
https://github.com/Ouranosinc/xscen/pull/92
https://github.com/Ouranosinc/xscen/issues/81
https://github.com/Ouranosinc/xscen/pull/92
https://github.com/Ouranosinc/xscen/pull/92
https://github.com/Ouranosinc/xscen/pull/92
https://github.com/Ouranosinc/xscen/issues/117
https://github.com/Ouranosinc/xscen/pull/119
https://github.com/Ouranosinc/xscen/issues/122
https://github.com/Ouranosinc/xscen/pull/126


xscen Documentation, Release 0.7.25-beta

• Fix stack_drop_nan not working if intermediate directories don’t exist (GH/128).

• Fixed a crash when compute_indicators produced fixed fields (PR/139).

Internal changes

• compute_deltas skips the unstacking step if there is no time dimension and cast object dimensions to string.
(PR/9)

• Added the “2sem” frequency to the translations CVs. (PR/111).

• Skip files we can’t read in parse_directory. (PR/111).

• Fixed non-numpy-standard Docstrings. (PR/108).

• Added more metadata to package description on PyPI. (PR/108).

• Faster search_data_catalogs and extract_dataset through a faster DataCatalog.unique, date parsing
and a rewrite of the ensure_correct_time logic. (PR/127).

• The search_data_catalogs function now accepts str or pathlib.Path variables (in addition to lists of either
data type) for performing catalog lookups. (PR/121).

• produce_horizons now supports fixed fields (PR/139).

• Rewrite of unstack_dates for better performance with dask arrays. (PR/144).

2.10.6 v0.4.0 (2022-09-28)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Juliette Lavoie (@juliettelavoie), Trevor James
Smith (@Zeitsperre) and Pascal Bourgault (@aulemahal).

New features and enhancements

• New functions diagnostics.properties_and_measures, diagnostics.measures_heatmap and
diagnostics.measures_improvement. (GH/5, PR/54).

• Add argument resample_methods to xs.extract.resample. (GH/57, PR/57)

• Added a ReadTheDocs configuration to expose public documentation. (GH/65, PR/66).

• xs.utils.stack_drop_nans/ xs.utils.unstack_fill_nan will now format the to_file/coords string to
add the domain and the shape. (GH/59, PR/67).

• New unstack_dates function to “extract” seasons or months from a timeseries. (PR/68).

• Better spatial_mean for cases using xESMF and a shapefile with multiple polygons. (PR/68).

• Yet more changes to parse_directory: (PR/68).

– Better parallelization by merging the finding and name-parsing step in the same dask tree.

– Allow cvs for the variable columns.

– Fix parsing the variable names from datasets.

– Sort the variables in the tuples (for a more consistent output)

• In extract_dataset, add option ensure_correct_time to ensure the time coordinate matches the expected freq.
Ex: monthly values given on the 15th day are moved to the 1st, as expected when asking for “MS”. (:issue: 53).

• In regrid_dataset: (PR/68).

124 Chapter 2. Features

https://github.com/Ouranosinc/xscen/issues/128
https://github.com/Ouranosinc/xscen/pull/139
https://github.com/Ouranosinc/xscen/pull/9
https://github.com/Ouranosinc/xscen/pull/111
https://github.com/Ouranosinc/xscen/pull/111
https://github.com/Ouranosinc/xscen/pull/108
https://github.com/Ouranosinc/xscen/pull/108
https://github.com/Ouranosinc/xscen/pull/127
https://github.com/Ouranosinc/xscen/pull/121
https://github.com/Ouranosinc/xscen/pull/139
https://github.com/Ouranosinc/xscen/pull/144
https://github.com/RondeauG
https://github.com/juliettelavoie
https://github.com/Zeitsperre
https://github.com/aulemahal
https://github.com/Ouranosinc/xscen/issues/5
https://github.com/Ouranosinc/xscen/pull/54
https://github.com/Ouranosinc/xscen/issues/57
https://github.com/Ouranosinc/xscen/pull/57
https://github.com/Ouranosinc/xscen/issues/65
https://github.com/Ouranosinc/xscen/pull/66
https://github.com/Ouranosinc/xscen/issues/59
https://github.com/Ouranosinc/xscen/pull/67
https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/68


xscen Documentation, Release 0.7.25-beta

– Allow passing skipna to the regridder kwargs.

– Do not fail for any grid mapping problem, includin if a grid_mapping attribute mentions a variable
that doesn’t exist.

• Default email sent to the local user. (PR/68).

• Special accelerated pathway for parsing catalogs with all dates within the datetime64[ns] range. (PR/75).

• New functions reduce_ensemble and build_reduction_data to support kkz and kmeans clustering. (GH/4,
PR/63).

• ensemble_stats can now loop through multiple statistics, support functions located in
xclim.ensembles._robustness, and supports weighted realizations. (PR/63).

• New function ensemble_stats.generate_weights that estimates weights based on simulation metadata. (PR/63).

• New function catalog.unstack_id to reverse-engineer IDs. (PR/63).

• generate_id now accepts Datasets. (PR/63).

• Add rechunk option to properties_and_measures (PR/76).

• Add create argument to ProjectCatalog (GH/11, PR/77).

• Add percentage deltas to compute_deltas (GH/82, PR/90).

Breaking changes

• statistics / stats_kwargs have been changed/eliminated in ensemble_stats, respectively. (PR/63).

Bug fixes

• Add a missing dependencies to the env (pyarrow, for faster string handling in catalogs). (PR/68).

• Allow passing compute=False to save_to_zarr. (PR/68).

Internal changes

• Small bugfixes in aggregate.py. (PR/55, PR/56).

• Default method of xs.extract.resample now depends on frequency. (GH/57, PR/58).

• Bugfix for _restrict_by_resolution with CMIP6 datasets (PR/71).

• More complete check of coverage in _subset_file_coverage. (GH/70, PR/72)

• The code that performs common_attrs_only in ensemble_stats has been moved to clean_up. (PR/63).

• Removed the default to_level in clean_up. (PR/63).

• xscen now has an official logo. (PR/69).

• Use numpy max and min in properties_and_measures (PR/76).

• Cast catalog date_start and date_end to “%4Y-%m-%d %H:00” when writing to disk. (GH/83, PR/79)

• Skip test of coverage on the sum if the list of select files is empty. (PR/79)

• Added missing CMIP variable names in conversions.yml and added the ability to provide a custom file instead
(GH/86, PR/88)

• Changed ‘allow_conversion’ and ‘allow_resample’ default to False in search_data_catalogs (GH/86, PR/88)

2.10. Changelog 125

https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/75
https://github.com/Ouranosinc/xscen/issues/4
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/76
https://github.com/Ouranosinc/xscen/issues/11
https://github.com/Ouranosinc/xscen/pull/77
https://github.com/Ouranosinc/xscen/issues/82
https://github.com/Ouranosinc/xscen/pull/90
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/68
https://github.com/Ouranosinc/xscen/pull/55
https://github.com/Ouranosinc/xscen/pull/56
https://github.com/Ouranosinc/xscen/issues/57
https://github.com/Ouranosinc/xscen/pull/58
https://github.com/Ouranosinc/xscen/pull/71
https://github.com/Ouranosinc/xscen/issues/70
https://github.com/Ouranosinc/xscen/pull/72
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/63
https://github.com/Ouranosinc/xscen/pull/69
https://github.com/Ouranosinc/xscen/pull/76
https://github.com/Ouranosinc/xscen/issues/83
https://github.com/Ouranosinc/xscen/pull/79
https://github.com/Ouranosinc/xscen/pull/79
https://github.com/Ouranosinc/xscen/issues/86
https://github.com/Ouranosinc/xscen/pull/88
https://github.com/Ouranosinc/xscen/issues/86
https://github.com/Ouranosinc/xscen/pull/88


xscen Documentation, Release 0.7.25-beta

2.10.7 v0.3.0 (2022-08-23)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Juliette Lavoie (@juliettelavoie), Trevor James
Smith (@Zeitsperre) and Pascal Bourgault (@aulemahal).

New features and enhancements

• New function clean_up added. (GH/22, PR/25).

• parse_directory: Fixes to xr_open_kwargs and support for wildcards (*) in the directories. (PR/19).

• New function xscen.ensemble.ensemble_stats added. (GH/3, PR/28).

• New functions spatial_mean, climatological_mean and deltas added. (GH/4, PR/35).

• Add argument intermediate_reg_grids to xscen.regridding.regrid. (GH/34, PR/39).

• Add argument moving_yearly_window to xscen.biasadjust.adjust. (PR/39).

• Many adjustments to parse_directory: better wildcards (GH/24), allow custom columns, fastpaths for
parse_from_ds, and more (PR/30).

• Documentation now makes better use of autodoc to generate package index. (PR/41).

• periods argument added to compute_indicators to support datasets with jumps in time (PR/35).

Breaking changes

• Patterns in parse_directory start at the end of the paths in directories. (PR/30).

• Argument extension of parse_directory has been renamed globpattern. (PR/30).

• The xscen API and filestructure have been significantly refactored. (GH/40, PR/41). The following
functions are available from the top-level:

– adjust, train, ensemble_stats, clisops_subset, dispatch_historical_to_future,
extract_dataset, resample, restrict_by_resolution, restrict_multimembers,
search_data_catalogs, save_to_netcdf, save_to_zarr, rechunk, compute_indicators,
regrid_dataset, and create_mask.

• xscen now requires geopandas and shapely (PR/35).

• Following a change in intake-esm xscen now uses “cat:” to prefix the dataset attributes extracted from the catalog.
All catalog-generated attributes should now be valid when saving to netCDF. (GH/13, PR/51).

Internal changes

• parse_directory: Fixes to xr_open_kwargs. (PR/19).

• Fix for indicators removing the ‘time’ dimension. (PR/23).

• Security scanning using CodeQL and GitHub Actions is now configured for the repository. (PR/21).

• Bumpversion action now configured to automatically augment the version number on each merged pull request.
(PR/21).

• Add align_on = 'year' argument in bias adjustment converting of calendars. (PR/39).

• GitHub Actions using Ubuntu-22.04 images are now configured for running testing ensemble using tox-conda.
(PR/44).

126 Chapter 2. Features

https://github.com/RondeauG
https://github.com/juliettelavoie
https://github.com/Zeitsperre
https://github.com/aulemahal
https://github.com/Ouranosinc/xscen/issues/22
https://github.com/Ouranosinc/xscen/pull/25
https://github.com/Ouranosinc/xscen/pull/19
https://github.com/Ouranosinc/xscen/issues/3
https://github.com/Ouranosinc/xscen/pull/28
https://github.com/Ouranosinc/xscen/issues/4
https://github.com/Ouranosinc/xscen/pull/35
https://github.com/Ouranosinc/xscen/issues/34
https://github.com/Ouranosinc/xscen/pull/39
https://github.com/Ouranosinc/xscen/pull/39
https://github.com/Ouranosinc/xscen/issues/24
https://github.com/Ouranosinc/xscen/pull/30
https://github.com/Ouranosinc/xscen/pull/41
https://github.com/Ouranosinc/xscen/pull/35
https://github.com/Ouranosinc/xscen/pull/30
https://github.com/Ouranosinc/xscen/pull/30
https://github.com/Ouranosinc/xscen/issues/40
https://github.com/Ouranosinc/xscen/pull/41
https://github.com/Ouranosinc/xscen/pull/35
https://github.com/Ouranosinc/xscen/issues/13
https://github.com/Ouranosinc/xscen/pull/51
https://github.com/Ouranosinc/xscen/pull/19
https://github.com/Ouranosinc/xscen/pull/23
https://github.com/Ouranosinc/xscen/pull/21
https://github.com/Ouranosinc/xscen/pull/21
https://github.com/Ouranosinc/xscen/pull/39
https://github.com/Ouranosinc/xscen/pull/44


xscen Documentation, Release 0.7.25-beta

• import xscen smoke test is now run on all pull requests. (PR/44).

• Fix for create_mask removing attributes (PR/35).

2.10.8 v0.2.0 (first official release)

Contributors to this version: Gabriel Rondeau-Genesse (@RondeauG), Pascal Bourgault (@aulemahal), Trevor James
Smith (@Zeitsperre), Juliette Lavoie (@juliettelavoie).

Announcements

• This is the first official release for xscen!

New features and enhancements

• Supports workflows with YAML configuration files for better transparency, reproducibility, and long-term back-
ups.

• Intake_esm-based catalog to find and manage climate data.

• Climate dataset extraction, subsetting, and temporal aggregation.

• Calculate missing variables through Intake-esm’s DerivedVariableRegistry.

• Regridding with xESMF.

• Bias adjustment with xclim.

Breaking changes

• N/A

Internal changes

• N/A

2.11 xscen

2.11.1 xscen package

A climate change scenario-building analysis framework, built with xclim/xarray.

xscen.warning_on_one_line(message: str, category: Warning, filename: str, lineno: int, file=None, line=None)
Monkeypatch Reformat warning so that warnings.warn doesn’t mention itself.

2.11. xscen 127

https://github.com/Ouranosinc/xscen/pull/44
https://github.com/Ouranosinc/xscen/pull/35
https://github.com/RondeauG
https://github.com/aulemahal
https://github.com/Zeitsperre
https://github.com/juliettelavoie


xscen Documentation, Release 0.7.25-beta

Subpackages

xscen.xclim_modules package

xclim extension module.

Submodules

xscen.xclim_modules.conversions module

Conversion functions for when datasets are missing particular variables and that xclim doesn’t already implement.

xscen.xclim_modules.conversions.dtr(tasmin: DataArray, tasmax: DataArray)→ DataArray
DTR computed from tasmin and tasmax.

Dtr as tasmin subtracted from tasmax.

Parameters

• tasmin (xr.DataArray) – Daily minimal temperature.

• tasmax (xr.DataArray) – Daily maximal temperature.

Returns
xr.DataArray, K – Daily temperature range

xscen.xclim_modules.conversions.precipitation(prsn: DataArray, prlp: DataArray)→ DataArray
Precipitation of all phases.

Compute the precipitation flux from all phases by adding solid and liquid precipitation.

Parameters

• prsn (xr.DataArray) – Solid precipitation flux.

• prlp (xr.DataArray) – Liquid precipitation flux.

Returns
xr.DataArray, [same as prsn] – Surface precipitation flux (all phases)

xscen.xclim_modules.conversions.tasmax_from_dtr(dtr: DataArray, tasmin: DataArray)→ DataArray
Tasmax computed from DTR and tasmin.

Tasmax as dtr added to tasmin.

Parameters

• dtr (xr.DataArray) – Daily temperature range

• tasmin (xr.DataArray) – Daily minimal temperature.

Returns
xr.DataArray, [same as tasmin] – Daily maximum temperature

xscen.xclim_modules.conversions.tasmin_from_dtr(dtr: DataArray, tasmax: DataArray)→ DataArray
Tasmin computed from DTR and tasmax.

Tasmin as dtr subtracted from tasmax.

Parameters

• dtr (xr.DataArray) – Daily temperature range

128 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

• tasmax (xr.DataArray) – Daily maximal temperature.

Returns
xr.DataArray, [same as tasmax] – Daily minimum temperature

Submodules

xscen.aggregate module

Functions to aggregate data over time and space.

xscen.aggregate.climatological_mean(ds: Dataset, *, window: int | None = None, min_periods: int | None =
None, interval: int = 1, periods: list[str] | list[list[str]] | None =
None, to_level: str | None = 'climatology')→ Dataset

Compute the mean over ‘year’ for given time periods, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• window (int, optional) – Number of years to use for the time periods. If left at None and
periods is given, window will be the size of the first period. If left at None and periods is
not given, the window will be the size of the input dataset.

• min_periods (int, optional) – For the rolling operation, minimum number of years re-
quired for a value to be computed. If left at None and the xrfreq is either QS or AS and
doesn’t start in January, min_periods will be one less than window. If left at None, it will
be deemed the same as ‘window’.

• interval (int) – Interval (in years) at which to provide an output.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods to be considered. This is needed when the time axis of ds contains
some jumps in time. If None, the dataset will be considered continuous.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset of the climatological mean, by calling climatological_op with
option op==’mean’.

xscen.aggregate.climatological_op(ds: Dataset, *, op: str | dict = 'mean', window: int | None = None,
min_periods: int | float | None = None, stride: int = 1, periods: list[str] |
list[list[str]] | None = None, rename_variables: bool = True, to_level:
str = 'climatology', horizons_as_dim: bool = False)→ Dataset

Perform an operation ‘op’ over time, for given time periods, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• op (str or dict) – Operation to perform over time. The operation can be any method name
of xarray.core.rolling.DatasetRolling, ‘linregress’, or a dictionary. If ‘op’ is a dictionary,
the key is the operation name and the value is a dict of kwargs accepted by the oper-
ation. While other operations are technically possible, the following are recommended
and tested: [‘max’, ‘mean’, ‘median’, ‘min’, ‘std’, ‘sum’, ‘var’, ‘linregress’]. Operations
beyond methods of xarray.core.rolling.DatasetRolling include:

2.11. xscen 129

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

– ‘linregress’ : Computes the linear regression over time, using scipy.stats.linregress
and employing years as regressors. The output will have a new dimension ‘lin-
reg_param’ with coordinates: [‘slope’, ‘intercept’, ‘rvalue’, ‘pvalue’, ‘stderr’, ‘inter-
cept_stderr’].

Only one operation per call is supported, so len(op)==1 if a dict.

• window (int, optional) – Number of years to use for the rolling operation. If left at None
and periods is given, window will be the size of the first period. Hence, if periods are of
different lengths, the shortest period should be passed first. If left at None and periods is
not given, the window will be the size of the input dataset.

• min_periods (int or float, optional) – For the rolling operation, minimum number of years
required for a value to be computed. If left at None and the xrfreq is either QS or AS and
doesn’t start in January, min_periods will be one less than window. Otherwise, if left at
None, it will be deemed the same as ‘window’. If passed as a float value between 0 and 1,
this will be interpreted as the floor of the fraction of the window size.

• stride (int) – Stride (in years) at which to provide an output from the rolling window
operation.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods to be considered. This is needed when the time axis of ds contains
some jumps in time. If None, the dataset will be considered continuous.

• rename_variables (bool) – If True, ‘_clim_{op}’ will be added to variable names.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

• horizons_as_dim (bool) – If True, the output will have ‘horizon’ and the frequency as
‘month’, ‘season’ or ‘year’ as dimensions and coordinates. The ‘time’ coordinate will be
unstacked to horizon and frequency dimensions. Horizons originate from periods and/or
windows and their stride in the rolling operation.

Returns
xr.Dataset – Dataset with the results from the climatological operation.

xscen.aggregate.compute_deltas(ds: Dataset, reference_horizon: str | Dataset, *, kind: str | dict = '+',
rename_variables: bool = True, to_level: str | None = 'deltas')→ Dataset

Compute deltas in comparison to a reference time period, respecting the temporal resolution of ds.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• reference_horizon (str or xr.Dataset) – Either a YYYY-YYYY string corresponding to
the ‘horizon’ coordinate of the reference period, or a xr.Dataset containing the climato-
logical mean.

• kind (str or dict) – [‘+’, ‘/’, ‘%’] Whether to provide absolute, relative, or percentage
deltas. Can also be a dictionary separated per variable name.

• rename_variables (bool) – If True, ‘_delta_YYYY-YYYY’ will be added to variable
names.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset with the requested deltas.

130 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.aggregate.produce_horizon(ds: Dataset, indicators: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, *, periods: list[str] | list[list[str]]
| None = None, warminglevels: dict | None = None, to_level: str | None =
'horizons', period: list | None = None)→ Dataset

Compute indicators, then the climatological mean, and finally unstack dates in order to have a single dataset with
all indicators of different frequencies.

Once this is done, the function drops ‘time’ in favor of ‘horizon’. This function computes the indicators and does
an interannual mean. It stacks the season and month in different dimensions and adds a dimension horizon for
the period or the warming level, if given.

Parameters

• ds (xr.Dataset) – Input dataset with a time dimension.

• indicators (Union[str, os.PathLike, Sequence[Indicator], Sequence[Tuple[str, Indica-
tor]], ModuleType]) – Indicators to compute. It will be passed to the indicators argument
of xs.compute_indicators.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start_year,
end_year] for the period(s) to be evaluated. If both periods and warminglevels are None,
the full time series will be used.

• warminglevels (dict, optional) – Dictionary of arguments to pass to
py:func:xscen.subset_warming_level. If ‘wl’ is a list, the function will be called
for each value and produce multiple horizons. If both periods and warminglevels are
None, the full time series will be used.

• to_level (str, optional) – The processing level to assign to the output. If there is only one
horizon, you can use “{wl}”, “{period0}” and “{period1}” in the string to dynamically
include that information in the processing level.

Returns
xr.Dataset – Horizon dataset.

xscen.aggregate.spatial_mean(ds: Dataset, method: str, *, spatial_subset: bool | None = None, call_clisops:
bool | None = False, region: str | dict | None = None, kwargs: dict | None =
None, simplify_tolerance: float | None = None, to_domain: str | None = None,
to_level: str | None = None)→ Dataset

Compute the spatial mean using a variety of available methods.

Parameters

• ds (xr.Dataset) – Dataset to use for the computation.

• method (str) – ‘cos-lat’ will weight the area covered by each pixel using an approximation
based on latitude. ‘interp_centroid’ will find the region’s centroid (if coordinates are not
fed through kwargs), then perform a .interp() over the spatial dimensions of the Dataset.
The coordinate can also be directly fed to .interp() through the ‘kwargs’ argument below.
‘xesmf’ will make use of xESMF’s SpatialAverager. This will typically be more precise,
especially for irregular regions, but can be much slower than other methods.

• spatial_subset (bool, optional) – If True, xscen.spatial.subset will be called prior to the
other operations. This requires the ‘region’ argument. If None, this will automatically
become True if ‘region’ is provided and the subsetting method is either ‘cos-lat’ or ‘mean’.

• region (dict or str, optional) – Description of the region and the subsetting method (re-
quired fields listed in the Notes). If method==’interp_centroid’, this is used to find the

2.11. xscen 131

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

region’s centroid. If method==’xesmf’, the bounding box or shapefile is given to Spa-
tialAverager. Can also be “global”, for global averages. This is simply a shortcut for
{‘name’: ‘global’, ‘method’: ‘bbox’, ‘lon_bnds’ [-180, 180], ‘lat_bnds’: [-90, 90]}.

• kwargs (dict, optional) – Arguments to send to either mean(), interp() or SpatialAver-
ager(). For SpatialAverager, one can give skipna or out_chunks here, to be passed to the
averager call itself.

• simplify_tolerance (float, optional) – Precision (in degree) used to simplify a shapefile
before sending it to SpatialAverager(). The simpler the polygons, the faster the averaging,
but it will lose some precision.

• to_domain (str, optional) – The domain to assign to the output. If None, the domain of
the inputs is preserved.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
xr.Dataset – Returns a Dataset with the spatial dimensions averaged.

Notes

‘region’ required fields:

name: str
Region name used to overwrite domain in the catalog.

method: str
[‘gridpoint’, ‘bbox’, shape’, ‘sel’]

tile_buffer: float, optional
Multiplier to apply to the model resolution. Only used if spatial_subset==True.

kwargs
Arguments specific to the method used.

See also:

xarray.Dataset.mean, xarray.Dataset.interp, xesmf.SpatialAverager

xscen.biasadjust module

Functions to train and adjust a dataset using a bias-adjustment algorithm.

xscen.biasadjust.adjust(dtrain: Dataset, dsim: Dataset, periods: list[str] | list[list[str]], *, xclim_adjust_args:
dict | None = None, to_level: str = 'biasadjusted', bias_adjust_institution: str | None
= None, bias_adjust_project: str | None = None, moving_yearly_window: dict | None
= None, align_on: str | None = 'year')→ Dataset

Adjust a simulation.

Parameters

• dtrain (xr.Dataset) – A trained algorithm’s dataset, as returned by train.

• dsim (xr.Dataset) – Simulated timeseries, projected period.

• periods (list of str or list of lists of str) – Either [start, end] or list of [start, end] of the
simulation periods to be adjusted (one at a time).

132 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.mean.html#xarray.Dataset.mean
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.interp.html#xarray.Dataset.interp
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• xclim_adjust_args (dict, optional) – Dict of arguments to pass to the .adjust of the ad-
justment object.

• to_level (str) – The processing level to assign to the output. Defaults to ‘biasadjusted’

• bias_adjust_institution (str, optional) – The institution to assign to the output.

• bias_adjust_project (str, optional) – The project to assign to the output.

• moving_yearly_window (dict, optional) – Arguments to pass to
xclim.sdba.construct_moving_yearly_window. If not None, con-
struct_moving_yearly_window will be called on dsim (and scen in xclim_adjust_args if it
exists) before adjusting and unpack_moving_yearly_window will be called on the output
after the adjustment. construct_moving_yearly_window stacks windows of the dataArray
in a new ‘movingwin’ dimension. unpack_moving_yearly_window unpacks it to a normal
time series.

• align_on (str, optional) – align_on argument for the fonction
xclim.core.calendar.convert_calendar.

Returns
xr.Dataset – dscen, the bias-adjusted timeseries.

See also:

xclim.sdba.adjustment.DetrendedQuantileMapping, xclim.sdba.adjustment.ExtremeValues

xscen.biasadjust.train(dref: Dataset, dhist: Dataset, var: str | list[str], period: list[str], *, method: str =
'DetrendedQuantileMapping', group: Grouper | str | dict | None = None,
xclim_train_args: dict | None = None, maximal_calendar: str = 'noleap', adapt_freq:
dict | None = None, jitter_under: dict | None = None, jitter_over: dict | None = None,
align_on: str | None = 'year')→ Dataset

Train a bias-adjustment.

Parameters

• dref (xr.Dataset) – The target timeseries, on the reference period.

• dhist (xr.Dataset) – The timeseries to adjust, on the reference period.

• var (str or list of str) – Variable on which to do the adjustment. Currently only supports
one variable.

• period (list of str) – [start, end] of the reference period

• method (str) – Name of the sdba.TrainAdjust method of xclim.

• group (str or sdba.Grouper or dict, optional) – Grouping information. If a string,
it is interpreted as a grouper on the time dimension. If a dict, it is passed to
sdba.Grouper.from_kwargs. Defaults to {“group”: “time.dayofyear”, “window”: 31}.

• xclim_train_args (dict) – Dict of arguments to pass to the .train of the adjustment object.

• maximal_calendar (str) – Maximal calendar dhist can be. The hierarchy: 360_day <
noleap < standard < all_leap. If dhist’s calendar is higher than maximal calendar, it will
be converted to the maximal calendar.

• adapt_freq (dict, optional) – If given, a dictionary of args to pass to the frequency adap-
tation function.

• jitter_under (dict, optional) – If given, a dictionary of args to pass to jitter_under_thresh.

• jitter_over (dict, optional) – If given, a dictionary of args to pass to jitter_over_thresh.

2.11. xscen 133

https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.DetrendedQuantileMapping
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.ExtremeValues
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.base.Grouper
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• align_on (str, optional) – align_on argument for the function
xclim.core.calendar.convert_calendar.

Returns
xr.Dataset – Trained algorithm’s data.

See also:

xclim.sdba.adjustment.DetrendedQuantileMapping, xclim.sdba.adjustment.ExtremeValues

xscen.catalog module

Catalog objects and related tools.

xscen.catalog.COLUMNS = ['id', 'type', 'processing_level', 'bias_adjust_institution',
'bias_adjust_project', 'mip_era', 'activity', 'driving_model', 'institution', 'source',
'experiment', 'member', 'xrfreq', 'frequency', 'variable', 'domain', 'date_start',
'date_end', 'version', 'format', 'path']

Official column names.

class xscen.catalog.DataCatalog(*args, **kwargs)
Bases: esm_datastore

A read-only intake_esm catalog adapted to xscen’s syntax.

This class expects the catalog to have the columns listed in xscen.catalog.COLUMNS and it comes with default
arguments for reading the CSV files (xscen.catalog.csv_kwargs). For example, all string columns (except
path) are cast to a categorical dtype and the datetime columns are parsed with a special function that allows dates
outside the conventional datetime64[ns] bounds by storing the data using pandas.Period objects.

Parameters

• *args (str or os.PathLike or dict) – Path to a catalog JSON file. If a dict, it must have two
keys: ‘esmcat’ and ‘df’. ‘esmcat’ must be a dict representation of the ESM catalog. ‘df’
must be a Pandas DataFrame containing content that would otherwise be in the CSV file.

• check_valid (bool) – If True, will check that all files in the catalog exist on disk and
remove those that don’t.

• drop_duplicates (bool) – If True, will drop duplicates in the catalog based on the ‘id’ and
‘path’ columns.

• **kwargs (dict) – Any other arguments are passed to intake_esm.esm_datastore.

See also:

intake_esm.core.esm_datastore

check_valid()

Verify that all files in the catalog exist on disk and remove those that don’t.

If a file is a Zarr, it will also check that all variables are present and remove those that aren’t.

drop_duplicates(columns: list[str] | None = None)
Drop duplicates in the catalog based on a subset of columns.

Parameters
columns (list of str, optional) – The columns used to identify duplicates. If None, ‘id’ and
‘path’ are used.

134 Chapter 2. Features

https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.DetrendedQuantileMapping
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#xclim.sdba.adjustment.ExtremeValues
https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period


xscen Documentation, Release 0.7.25-beta

exists_in_cat(**columns)→ bool
Check if there is an entry in the catalogue corresponding to the arguments given.

Parameters
columns (Arguments that will be given to catalog.search)

Returns
bool – True if there is an entry in the catalogue corresponding to the arguments given.

classmethod from_df(data: DataFrame | PathLike | Sequence[PathLike], esmdata: PathLike | dict | None
= None, *, read_csv_kwargs: Mapping[str, Any] | None = None, name: str =
'virtual', **intake_kwargs)

Create a DataCatalog from one or more csv files.

Parameters

• data (DataFrame or path or sequence of paths) – A DataFrame or one or more paths
to csv files.

• esmdata (path or dict, optional) – The “ESM collection data” as a path to a json file
or a dict. If None (default), xscen’s default esm_col_data is used.

• read_csv_kwargs (dict, optional) – Extra kwargs to pass to pd.read_csv, in addition
to the ones in csv_kwargs.

• name (str) – If metadata doesn’t contain it, a name to give to the catalog.

See also:

pandas.read_csv

iter_unique(*columns)
Iterate over sub-catalogs for each group of unique values for all specified columns.

This is a generator that yields a tuple of the unique values of the current group, in the same order as the
arguments, and the sub-catalog.

search(**columns)
Modification of .search() to add the ‘periods’ keyword.

to_dataset(concat_on: str | list[str] | None = None, create_ensemble_on: str | list[str] | None = None,
ensemble_name: list[str] | None = None, calendar: str | None = 'standard', **kwargs)→
Dataset

Open the catalog’s entries into a single dataset.

Same as to_dask(), but with additional control over the aggregations. The dataset definition logic is left
untouched by this method (by default: [“id”, “domain”, “processing_level”, “xrfreq”]), except that newly
aggregated columns are removed from the “id”. This will override any “custom” id, ones not unstackable
with unstack_id().

Ensemble preprocessing logic is taken from xclim.ensembles.create_ensemble(). When cre-
ate_ensemble_on is given, the function ensures all entries have the correct time coordinate according to
xrfreq.

Parameters

• concat_on (list of str or str, optional) – A list of catalog columns over which to concat
the datasets (in addition to ‘time’). Each will become a new dimension with the column
values as coordinates. Xarray concatenation rules apply and can be acted upon through
xarray_combine_by_coords_kwargs.

2.11. xscen 135

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• create_ensemble_on (list of str or str, optional) – The given column values will
be merged into a new id-like “realization” column, which will be concatenated
over. The given columns are removed from the dataset id, to remove them from the
groupby_attrs logic. Xarray concatenation rules apply and can be acted upon through
xarray_combine_by_coords_kwargs.

• ensemble_name (list of strings, optional) – If create_ensemble_on is given, this can
be a subset of those column names to use when constructing the realization coordinate.
If None, this will be the same as create_ensemble_on. The resulting coordinate must
be unique.

• calendar (str, optional) – If create_ensemble_on is given, all datasets are converted
to this calendar before concatenation. Ignored otherwise (default). If None, no con-
version is done. align_on is always “date”.

• kwargs – Any other arguments are passed to to_dataset_dict(). The preprocess
argument cannot be used if create_ensemble_on is given.

Returns
Dataset

See also:

intake_esm.core.esm_datastore.to_dataset_dict, intake_esm.core.esm_datastore.
to_dask, xclim.ensembles.create_ensemble

unique(columns: str | Sequence[str] | None = None)
Return a series of unique values in the catalog.

Parameters
columns (str or sequence of str, optional) – The columns to get unique values from. If
None, all columns are used.

xscen.catalog.ID_COLUMNS = ['bias_adjust_project', 'mip_era', 'activity',
'driving_model', 'institution', 'source', 'experiment', 'member', 'domain']

Default columns used to create a unique ID

class xscen.catalog.ProjectCatalog(*args, **kwargs)
Bases: DataCatalog

A DataCatalog with additional ‘write’ functionalities that can update and upload itself.

See also:

intake_esm.core.esm_datastore

classmethod create(filename: PathLike | str, *, project: dict | None = None, overwrite: bool = False)
Create a new project catalog from some project metadata.

Creates the json from default esm_col_data and an empty csv file.

Parameters

• filename (os.PathLike or str) – A path to the json file (with or without suffix).

• project (dict, optional) – Metadata to create the catalog. If None, CONFIG[‘project’]
will be used. Valid fields are:

– title : Name of the project, given as the catalog’s “title”.

– id
[slug-like version of the name, given as the catalog’s id (should be url-proof)]
Defaults to a modified name.

136 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

– version : Version of the project (and thus the catalog), string like “x.y.z”.

– description : Detailed description of the project, given to the catalog’s “descrip-
tion”.

– Any other entry defined in esm_col_data.

At least one of id and title must be given, the rest is optional.

• overwrite (bool) – If True, will overwrite any existing JSON and CSV file.

Returns
ProjectCatalog – An empty intake_esm catalog.

refresh()

Reread the catalog CSV saved on disk.

update(df: DataCatalog | esm_datastore | DataFrame | Series | Sequence[Series] | None = None)
Update the catalog with new data and writes the new data to the csv file.

Once the internal dataframe is updated with df, the csv on disk is parsed, updated with the internal
dataframe, duplicates are dropped and everything is written back to the csv. This means that nothing is
_removed_* from the csv when calling this method, and it is safe to use even with a subset of the catalog.

Warning: If a file was deleted between the parsing of the catalog and this call, it will be removed
from the csv when check_valid is called.

Parameters
df (Union[DataCatalog, intake_esm.esm_datastore, pd.DataFrame, pd.Series, Se-
quence[pd.Series]], optional) – Data to be added to the catalog. If None, nothing is added,
but the catalog is still updated.

update_from_ds(ds: Dataset, path: PathLike | str, info_dict: dict | None = None, **info_kwargs)
Update the catalog with new data and writes the new data to the csv file.

We get the new data from the attributes of ds, the dictionary info_dict and path.

Once the internal dataframe is updated with the new data, the csv on disk is parsed, updated with the
internal dataframe, duplicates are dropped and everything is written back to the csv. This means that
nothing is _removed_* from the csv when calling this method, and it is safe to use even with a subset of
the catalog.

Warning: If a file was deleted between the parsing of the catalog and this call, it will be removed
from the csv when check_valid is called.

Parameters

• ds (xarray.Dataset) – Dataset that we want to add to the catalog. The columns of the
catalog will be filled from the global attributes starting with ‘cat:’ of the dataset.

• info_dict (dict, optional) – Extra information to fill in the catalog.

• path (os.PathLike or str) – Path to the file that contains the dataset. This will be added
to the ‘path’ column of the catalog.

2.11. xscen 137

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.catalog.concat_data_catalogs(*dcs)
Concatenate a multiple DataCatalogs.

Output catalog is the union of all rows and all derived variables, with the “esmcat” of the first DataCatalog.
Duplicate rows are dropped and the index is reset.

xscen.catalog.generate_id(df: DataFrame | Dataset, id_columns: list | None = None)→ Series
Create an ID from column entries.

Parameters

• df (pd.DataFrame, xr.Dataset) – Data for which to create an ID.

• id_columns (list, optional) – List of column names on which to base the dataset definition.
Empty columns will be skipped. If None (default), uses ID_COLUMNS.

Returns
pd.Series – A series of IDs, one per row of the input DataFrame.

xscen.catalog.unstack_id(df: DataFrame | ProjectCatalog | DataCatalog)→ dict
Reverse-engineer an ID using catalog entries.

Parameters
df (Union[pd.DataFrame, ProjectCatalog, DataCatalog]) – Either a Project/DataCatalog or
a pandas DataFrame.

Returns
dict – Dictionary with one entry per unique ID, which are themselves dictionaries of all the
individual parts of the ID.

xscen.catutils module

Catalog creation and path building tools.

xscen.catutils.build_path(data: dict | Dataset | DataArray | Series | DataCatalog | DataFrame, schemas: str |
PathLike | dict | None = None, root: str | PathLike | None = None, **extra_facets)
→ Path | DataCatalog | DataFrame

Parse the schema from a configuration and construct path using a dictionary of facets.

Parameters

• data (dict or xr.Dataset or xr.DataArray or pd.Series or DataCatalog or pd.DataFrame)
– Dict of facets. Or xarray object to read the facets from. In the latter case, variable and
time-dependent facets are read with parse_from_ds() and supplemented with all the
object’s attribute, giving priority to the “official” xscen attributes (prefixed with cat:, see
xscen.utils.get_cat_attrs()). Can also be a catalog or a DataFrame, in which a
“new_path” column is generated for each item.

• schemas (Path or dict, optional) – Path to YAML schematic of database schema. If None,
will use a default schema. See the comments in the xscen/data/file_schema.yml file for
more details on its construction. A dict of dict schemas can be given (same as reading the
yaml). Or a single schema dict (single element of the yaml).

• root (str or Path, optional) – If given, the generated path(s) is given under this root one.

• **extra_facets – Extra facets to supplement or override metadadata missing from the first
input.

Returns
Path or catalog – Constructed path. If “format” is absent from the facets, it has no suffix. If

138 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

data was a catalog, a copy with a “new_path” column is returned. Another “new_path_type”
column is also added if schemas was a collection of schemas (like the default).

Examples

To rename a full catalog, the simplest way is to do:

>>> import xscen as xs
>>> import shutil as sh
>>> new_cat = xs.catutils.build_path(old_cat)
>>> for i, row in new_cat.iterrows():
... sh.move(row.path, row.new_path)
...

xscen.catutils.parse_directory(directories: list[str | PathLike], patterns: list[str], *, id_columns: list[str] |
None = None, read_from_file: bool | Sequence[str] | tuple[Sequence[str],
Sequence[str]] | Sequence[tuple[Sequence[str], Sequence[str]]] = False,
homogenous_info: dict | None = None, cvs: str | PathLike | dict | None =
None, dirglob: str | None = None, xr_open_kwargs: Mapping[str, Any] |
None = None, only_official_columns: bool = True, progress: bool = False,
parallel_dirs: bool | int = False, file_checks: list[str] | None = None)→
DataFrame

Parse files in a directory and return them as a pd.DataFrame.

Parameters

• directories (list of os.PathLike or list of str) – List of directories to parse. The parse is
recursive.

• patterns (list of str) – List of possible patterns to be used by parse.parse() to decode
the file names. See Notes below.

• id_columns (list of str, optional) – List of column names on which to base the dataset
definition. Empty columns will be skipped. If None (default), it uses ID_COLUMNS.

• read_from_file (boolean or set of strings or tuple of 2 sets of strings or list of tuples) –
If True, if some fields were not parsed from their path, files are opened and missing fields
are parsed from their metadata, if found. If a sequence of column names, only those fields
are parsed from the file, if missing. If False (default), files are never opened. If a tuple
of 2 lists of strings, only the first file of groups defined by the first list of columns is read
and the second list of columns is parsed from the file and applied to the whole group. For
example, ([“source”],[“institution”, “activity”]) will find a group with all the files that
have the same source, open only one of the files to read the institution and activity, and
write this information in the catalog for all filles of the group. It can also be a list of those
tuples.

• homogenous_info (dict, optional) – Using the {column_name: description} format, in-
formation to apply to all files. These are applied before the cvs.

• cvs (str or os.PathLike or dict, optional) – Dictionary with mapping from parsed term
to preferred terms (Controlled VocabularieS) for each column. May have an additional
“attributes” entry which maps from attribute names in the files to official column names.
The attribute translation is done before the rest. In the “variable” entry, if a name is
mapped to None (null), that variable will not be listed in the catalog. A term can map
to another mapping from field name to values, so that a value on one column triggers
the filling of other columns. In the latter case, that other column must exist beforehand,
whether it was in the pattern or in the homogenous_info.

2.11. xscen 139

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

• dirglob (str, optional) – A glob pattern for path matching to accelerate the parsing of a
directory tree if only a subtree is needed. Only folders matching the pattern are parsed to
find datasets.

• xr_open_kwargs (dict) – If needed, arguments to send xr.open_dataset() when opening
the file to read the attributes.

• only_official_columns (bool) – If True (default), this ensures the final catalog only has
the columns defined in xscen.catalog.COLUMNS. Other fields in the patterns will raise
an error. If False, the columns are those used in the patterns and the homogenous info. In
that case, the column order is not determined. Path, format and id are always present in
the output.

• progress (bool) – If True, a counter is shown in stdout when finding files on disk. Does
nothing if parallel_dirs is not False.

• parallel_dirs (bool or int) – If True, each directory is searched in parallel. If an int, it is
the number of parallel searches. This should only be significantly useful if the directories
are on different disks.

• file_checks (list of str, optional) – A list of file checks to run on the parsed files. Available
values are: - “readable” : Check that the file is readable by the current user. - “writable”
: Check that the file is writable by the current user. - “ncvalid” : For netCDF, check that
it is valid (openable with netCDF4). Any check will slow down the parsing.

Notes

• Offical columns names are controlled and ordered by COLUMNS:

[“id”, “type”, “processing_level”, “mip_era”, “activity”, “driving_institution”,
“driving_model”, “institution”,

“source”, “bias_adjust_institution”, “bias_adjust_project”,”experiment”, “member”, “xrfreq”,
“frequency”, “variable”, “domain”, “date_start”, “date_end”, “version”]

• Not all column names have to be present, but “xrfreq” (obtainable through “frequency”),
“variable”,

“date_start” and “processing_level” are necessary for a workable catalog.

• ‘patterns’ should highlight the columns with braces.
This acts like the reverse operation of format(). It is a template string with {field name:type} elements.
The default “type” will match alphanumeric parts of the path, excluding the “_”, “/” and “" characters.
The “_” type will allow underscores. Field names prefixed by “?” will not be included in the output.
See the documentation of parse for more type options. You can also add your own types using the
register_parse_type() decorator.

The “DATES” field is special as it will only match dates, either as a single date (YYYY, YYYYMM,
YYYYMMDD) assigned to “{date_start}” (with “date_end” automatically inferred) or two dates of
the same format as “{date_start}-{date_end}”.

Example: “{source}/{?ignored project name}_{?:_}_{DATES}.nc” Here, “source” will be the full
folder name and it can’t include underscores. The first section of the filename will be excluded from
the output, it was given a name (ignore project name) to make the pattern readable. The last section
of the filenames (“dates”) will yield a “date_start” / “date_end” couple. All other sections in the
middle will be ignored, as they match “{?:_}”.

Returns
pd.DataFrame – Parsed directory files

140 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

xscen.catutils.parse_from_ds(obj: str | PathLike | Dataset, names: Sequence[str], attrs_map: Mapping[str,
str] | None = None, **xrkwargs)

Parse a list of catalog fields from the file/dataset itself.

If passed a path, this opens the file.

Infers the variable from the variables. Infers xrfreq, frequency, date_start and date_end from the time coordinate
if present. Infers other attributes from the coordinates or the global attributes. Attributes names can be translated
using the attrs_map mapping (from file attribute name to name in names).

If the obj is the path to a Zarr dataset and none of “frequency”, “xrfreq”, “date_start” or “date_end” are requested,
parse_from_zarr() is used instead of opening the file.

Parameters

• obj (str or os.PathLike or xr.Dataset) – Dataset to parse.

• names (sequence of str) – List of attributes to be parsed from the dataset.

• attrs_map (dict, optional) – In the case of non-standard names in the file, this can be used
to match entries in the files to specific ‘names’ in the requested list.

• xrkwargs – Arguments to be passed to open_dataset().

xscen.catutils.register_parse_type(name: str, regex: str = '([^\\_\\/\\\\]*)', group_count: int = 1)
Register a new parse type to be available in parse_directory() patterns.

Function decorated by this will be registered in EXTRA_PARSE_TYPES. The function must take a single string and
should return a single string. If you return a different type, it may interfere with the other steps of parse_directory.

Parameters

• name (str) – The type name. To make use of this type, put “{field:name}” in your pattern.

• regex (str) – A regex string to determine what can be matched by this type. The default
matches anything but / and _, same as the default parse type.

• group_count (int) – The number of regex groups in the previous regex string.

xscen.config module

Configuration module.

Configuration in this module is taken from yaml files.

Functions wrapped by parse_config() have their kwargs automatically patched by values in the config.

The CONFIG dictionary contains all values, structured by submodules and functions. For example, for function
function defined in module.py of this package, the config would look like:

module:
function:

...kwargs...

The load_config() function fills the CONFIG dict from yaml files. It always updates the dictionary, so the latest file
read has the highest priority.

At calling time, the priority order is always (from highest to lowest priority):

1. Explicitly passed keyword-args

2. Values in the loaded config

3. Function’s default values.

2.11. xscen 141

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Special sections

After parsing the files, load_config() will look into the config and perform some extra actions when finding the
following special sections:

• logging: The content of this section will be sent directly to logging.config.dictConfig().

• xarray: The content of this section will be sent directly to xarray.set_options().

• xclim: The content of this section will be sent directly to xclim.set_options(). Here goes metadata_locales:
- fr to activate the automatic translation of added attributes, for example.

• warnings: The content of this section must be a simple mapping. The keys are understood as python warning
categories (types) and the values as an action to add to the filter. The key “all” applies the filter to any warnings.
Only built-in warnings are supported.

xscen.config.args_as_str(*args: tuple[Any, ...]) → tuple[str, ...]
Return arguments as strings.

xscen.config.load_config(*elements, reset: bool = False, verbose: bool = False)
Load configuration from given files or key=value pairs.

Once all elements are loaded, special sections are dispatched to their module, but only if the section was changed
by the loaded elements. These special sections are:

• locales : The locales to use when writing metadata in xscen, xclim and figanos. This section must be a list
of 2-char strings.

• logging : Everything passed to logging.config.dictConfig().

• xarray : Passed to xarray.set_options().

• xclim : Passed to xclim.set_options().

• warning : Mappings where the key is a Warning category (or “all”) and the value an action to pass to
warnings.simplefilter().

Parameters

• elements (str) – Files or values to add into the config. If a directory is passed, all .yml
files of this directory are added, in alphabetical order. If a “key=value” string, “key” is a
dotted name and value will be evaluated if possible. “key=value” pairs are set last, after
all files are being processed.

• reset (bool) – If True, the current config is erased before loading files.

• verbose (bool) – if True, each element triggers a INFO log line.

Example

load_config("my_config.yml", "config_dir/", "logging.loggers.xscen.level=DEBUG")

Will load configuration from my_config.yml, then from all yml files in config_dir and then the logging level of
xscen’s logger will be set to DEBUG.

xscen.config.parse_config(func_or_cls)

xscen.config.recursive_update(d, other)
Update a dictionary recursively with another dictionary.

Values that are Mappings are updated recursively as well.

142 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

xscen.diagnostics module

Functions to perform diagnostics on datasets.

xscen.diagnostics.health_checks(ds: Dataset | DataArray, *, structure: dict | None = None, calendar: str |
None = None, start_date: str | None = None, end_date: str | None = None,
variables_and_units: dict | None = None, cfchecks: dict | None = None,
freq: str | None = None, missing: dict | str | list | None = None, flags: dict |
None = None, flags_kwargs: dict | None = None, return_flags: bool =
False, raise_on: list | None = None)→ None | Dataset

Perform a series of health checks on the dataset. Be aware that missing data checks and flag checks can be slow.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset to check.

• structure (dict, optional) – Dictionary with keys “dims” and “coords” containing the ex-
pected dimensions and coordinates. This check will fail is extra dimensions or coordinates
are found.

• calendar (str, optional) – Expected calendar. Synonyms should be detected correctly (e.g.
“standard” and “gregorian”).

• start_date (str, optional) – To check if the dataset starts at least at this date.

• end_date (str, optional) – To check if the dataset ends at least at this date.

• variables_and_units (dict, optional) – Dictionary containing the expected variables and
units.

• cfchecks (dict, optional) – Dictionary where the key is the variable to check and the val-
ues are the cfchecks. The cfchecks themselves must be a dictionary with the keys be-
ing the cfcheck names and the values being the arguments to pass to the cfcheck. See
xclim.core.cfchecks for more details.

• freq (str, optional) – Expected frequency, written as the result of xr.infer_freq(ds.time).

• missing (dict or str or list of str, optional) – String, list of strings, or dictionary where the
key is the method to check for missing data and the values are the arguments to pass to
the method. The methods are: “missing_any”, “at_least_n_valid”, “missing_pct”, “miss-
ing_wmo”. See xclim.core.missing() for more details.

• flags (dict, optional) – Dictionary where the key is the variable to check and the values
are the flags. The flags themselves must be a dictionary with the keys being the data_flags
names and the values being the arguments to pass to the data_flags. If None is passed
instead of a dictionary, then xclim’s default flags for the given variable are run. See
xclim.core.utils.VARIABLES. See also xclim.core.dataflags.data_flags()
for the list of possible flags.

• flags_kwargs (dict, optional) – Additional keyword arguments to pass to the data_flags
(“dims” and “freq”).

• return_flags (bool) – Whether to return the Dataset created by data_flags.

• raise_on (list of str, optional) – Whether to raise an error if a check fails, else there will
only be a warning. The possible values are the names of the checks. Use [“all”] to raise
on all checks.

Returns
xr.Dataset or None – Dataset containing the flags if return_flags is True & raise_on is False
for the “flags” check.

2.11. xscen 143

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.utils.VARIABLES
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.dataflags.data_flags


xscen Documentation, Release 0.7.25-beta

xscen.diagnostics.measures_heatmap(meas_datasets: list[Dataset] | dict, to_level: str = 'diag-heatmap')→
Dataset

Create a heatmap to compare the performance of the different datasets.

The columns are properties and the rows are datasets. Each point is the absolute value of the mean of the measure
over the whole domain. Each column is normalized from 0 (best) to 1 (worst).

Parameters

• meas_datasets (list of xr.Dataset or dict) – List or dictionary of datasets of measures of
properties. If it is a dictionary, the keys will be used to name the rows. If it is a list, the
rows will be given a number.

• to_level (str) – The processing_level to assign to the output.

Returns
xr.Dataset – Dataset containing the heatmap.

xscen.diagnostics.measures_improvement(meas_datasets: list[Dataset] | dict, to_level: str =
'diag-improved')→ Dataset

Calculate the fraction of improved grid points for each property between two datasets of measures.

Parameters

• meas_datasets (list of xr.Dataset or dict) – List of 2 datasets: Initial dataset of measures
and final (improved) dataset of measures. Both datasets must have the same variables. It
is also possible to pass a dictionary where the values are the datasets and the key are not
used.

• to_level (str) – processing_level to assign to the output dataset

Returns
xr.Dataset – Dataset containing information on the fraction of improved grid points for each
property.

xscen.diagnostics.properties_and_measures(ds: Dataset, properties: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, period: list[str] |
None = None, unstack: bool = False, rechunk: dict | None =
None, dref_for_measure: Dataset | None = None,
change_units_arg: dict | None = None, to_level_prop: str =
'diag-properties', to_level_meas: str = 'diag-measures')→
tuple[Dataset, Dataset]

Calculate properties and measures of a dataset.

Parameters

• ds (xr.Dataset) – Input dataset.

• properties (Union[str, os.PathLike, Sequence[Indicator], Sequence[tuple[str, Indica-
tor]], ModuleType]) – Path to a YAML file that instructs on how to calculate properties.
Can be the indicator module directly, or a sequence of indicators or a sequence of tuples
(indicator name, indicator) as returned by iter_indicators().

• period (list of str, optional) – [start, end] of the period to be evaluated. The period will
be selected on ds and dref_for_measure if it is given.

• unstack (bool) – Whether to unstack ds before computing the properties.

• rechunk (dict, optional) – Dictionary of chunks to use for a rechunk before computing
the properties.

144 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• dref_for_measure (xr.Dataset, optional) – Dataset of properties to be used as the ref
argument in the computation of the measure. Ideally, this is the first output (prop) of a
previous call to this function. Only measures on properties that are provided both in this
dataset and in the properties list will be computed. If None, the second output of the
function (meas) will be an empty Dataset.

• change_units_arg (dict, optional) – If not None, calls xscen.utils.change_units on ds be-
fore computing properties using this dictionary for the variables_and_units argument. It
can be useful to convert units before computing the properties, because it is sometimes
easier to convert the units of the variables than the units of the properties (e.g. variance).

• to_level_prop (str) – processing_level to give the first output (prop)

• to_level_meas (str) – processing_level to give the second output (meas)

Returns

• prop (xr.Dataset) – Dataset of properties of ds

• meas (xr.Dataset) – Dataset of measures between prop and dref_for_meas

See also:

xclim.sdba.properties, xclim.sdba.measures, xclim.core.indicator.
build_indicator_module_from_yaml

xscen.ensembles module

Ensemble statistics and weights.

xscen.ensembles.build_partition_data(datasets: dict | list[Dataset], partition_dim: list[str] = ['source',
'experiment', 'bias_adjust_project'], subset_kw: dict = None,
regrid_kw: dict = None, rename_dict: dict = None)

Get the input for the xclim partition functions.

From a list or dictionary of datasets, create a single dataset with partition_dim dimensions (and time) to pass to
one of the xclim partition functions (https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning).
If the inputs have different grids, they have to be subsetted and regridded to a common grid/point.

Parameters

• datasets (dict) – List or dictionnary of Dataset objects that will be included in
the ensemble. The datasets should include the necessary (“cat:”) attributes to un-
derstand their metadata. Tip: With a project catalog, you can do: datasets =
pcat.search(**search_dict).to_dataset_dict().

• partition_dim (list[str]) – Components of the partition. They will become the dimension
of the output. The default is [‘source’, ‘experiment’, ‘bias_adjust_project’]. For source,
the dimension will actually be institution_source_member.

• subset_kw (dict) – Arguments to pass to xs.spatial.subset().

• regrid_kw – Arguments to pass to xs.regrid_dataset().

• rename_dict – Dictionary to rename the dimensions from xscen names to xclim names.
The default is {‘source’: ‘model’, ‘bias_adjust_project’: ‘downscaling’, ‘experiment’:
‘scenario’}.

Returns
xr.Dataset – The input data for the partition functions.

2.11. xscen 145

https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#module-xclim.sdba.properties
https://xclim.readthedocs.io/en/latest/apidoc/xclim.sdba.html#module-xclim.sdba.measures
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning


xscen Documentation, Release 0.7.25-beta

See also:

xclim.ensembles

xscen.ensembles.ensemble_stats(datasets: dict | list[str | PathLike] | list[Dataset] | list[DataArray] | Dataset,
statistics: dict, *, create_kwargs: dict | None = None, weights: DataArray |
None = None, common_attrs_only: bool = True, to_level: str = 'ensemble')
→ Dataset

Create an ensemble and computes statistics on it.

Parameters

• datasets (dict or list of [str, os.PathLike, Dataset or DataArray], or Dataset) – List
of file paths or xarray Dataset/DataArray objects to include in the ensemble. A dic-
tionary can be passed instead of a list, in which case the keys are used as coordinates
along the new realization axis. Tip: With a project catalog, you can do: datasets =
pcat.search(**search_dict).to_dataset_dict(). If a single Dataset is passed, it is assumed
to already be an ensemble and will be used as is. The ‘realization’ dimension is required.

• statistics (dict) – xclim.ensembles statistics to be called. Dictionary in the format {func-
tion: arguments}. If a function requires ‘weights’, you can leave it out of this dictionary
and it will be applied automatically if the ‘weights’ argument is provided. See the Notes
section for more details on robustness statistics, which are more complex in their usage.

• create_kwargs (dict, optional) – Dictionary of arguments for
xclim.ensembles.create_ensemble.

• weights (xr.DataArray, optional) – Weights to apply along the ‘realization’ dimension.
This array cannot contain missing values.

• common_attrs_only (bool) – If True, keeps only the global attributes that are the same
for all datasets and generate new id. If False, keeps global attrs of the first dataset (same
behaviour as xclim.ensembles.create_ensemble)

• to_level (str) – The processing level to assign to the output.

Returns
xr.Dataset – Dataset with ensemble statistics

Notes

• The positive fraction in ‘change_significance’ and ‘robustness_fractions’ is calculated by xclim using ‘v >
0’, which is not appropriate for relative deltas. This function will attempt to detect relative deltas by using
the ‘delta_kind’ attribute (‘rel.’, ‘relative’, ‘*’, or ‘/’) and will apply ‘v - 1’ before calling the function.

• The ‘robustness_categories’ statistic requires the outputs of ‘robustness_fractions’. Thus, there are two
ways to build the ‘statistics’ dictionary:

1. Having ‘robustness_fractions’ and ‘robustness_categories’ as separate entries in the dictionary. In
this case, all outputs will be returned.

2. Having ‘robustness_fractions’ as a nested dictionary under ‘robustness_categories’. In this case, only
the robustness categories will be returned.

• A ‘ref’ DataArray can be passed to ‘change_significance’ and ‘robustness_fractions’, which will be used by
xclim to compute deltas and perform some significance tests. However, this supposes that both ‘datasets’
and ‘ref’ are still timeseries (e.g. annual means), not climatologies where the ‘time’ dimension repre-
sents the period over which the climatology was computed. Thus, using ‘ref’ is only accepted if ‘robust-
ness_fractions’ (or ‘robustness_categories’) is the only statistic being computed.

146 Chapter 2. Features

https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#module-xclim.ensembles
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• If you want to use compute a robustness statistic on a climatology, you should first compute the climatolo-
gies and deltas yourself, then leave ‘ref’ as None and pass the deltas as the ‘datasets’ argument. This will
be compatible with other statistics.

See also:

xclim.ensembles._base.create_ensemble, xclim.ensembles._base.ensemble_percentiles,
xclim.ensembles._base.ensemble_mean_std_max_min, xclim.ensembles._robustness.
robustness_fractions, xclim.ensembles._robustness.robustness_categories, xclim.
ensembles._robustness.robustness_coefficient

xscen.ensembles.generate_weights(datasets: dict | list, *, independence_level: str = 'model',
balance_experiments: bool = False, attribute_weights: dict | None =
None, skipna: bool = True, v_for_skipna: str | None = None, standardize:
bool = False, experiment_weights: bool = False)→ DataArray

Use realization attributes to automatically generate weights along the ‘realization’ dimension.

Parameters

• datasets (dict) – List of Dataset objects that will be included in the ensemble. The
datasets should include the necessary attributes to understand their metadata - See ‘Notes’
below. A dictionary can be passed instead of a list, in which case the keys are used
for the ‘realization’ coordinate. Tip: With a project catalog, you can do: datasets =
pcat.search(**search_dict).to_dataset_dict().

• independence_level (str) – ‘model’: Weights using the method ‘1 model - 1 Vote’, where
every unique combination of ‘source’ and ‘driving_model’ is considered a model. ‘GCM’:
Weights using the method ‘1 GCM - 1 Vote’ ‘institution’: Weights using the method ‘1
institution - 1 Vote’

• balance_experiments (bool) – If True, each experiment will be given a total weight of 1
(prior to subsequent weighting made through attribute_weights). This option requires the
‘cat:experiment’ attribute to be present in all datasets.

• attribute_weights (dict, optional) – Nested dictionaries of weights to apply to each
dataset. These weights are applied after the independence weighting. The first level
of keys are the attributes for which weights are being given. The second level of keys
are unique entries for the attribute, with the value being either an individual weight or
a xr.DataArray. If a DataArray is used, its dimensions must be the same non-stationary
coordinate as the datasets (ex: time, horizon) and the attribute being weighted (ex: exper-
iment). A others key can be used to give the same weight to all entries not specifically
named in the dictionary. Example #1: {‘source’: {‘MPI-ESM-1-2-HAM’: 0.25, ‘MPI-
ESM1-2-HR’: 0.5}}, Example #2: {‘experiment’: {‘ssp585’: xr.DataArray, ‘ssp126’:
xr.DataArray}, ‘institution’: {‘CCCma’: 0.5, ‘others’: 1}}

• skipna (bool) – If True, weights will be computed from attributes only. If False, weights
will be computed from the number of non-missing values. skipna=False requires either a
‘time’ or ‘horizon’ dimension in the datasets.

• v_for_skipna (str, optional) – Variable to use for skipna=False. If None, the first variable
in the first dataset is used.

• standardize (bool) – If True, the weights are standardized to sum to 1 (per
timestep/horizon, if skipna=False).

• experiment_weights (bool) – Deprecated. Use balance_experiments instead.

2.11. xscen 147

https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.create_ensemble
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.ensemble_percentiles
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._base.ensemble_mean_std_max_min
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_fractions
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_fractions
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_categories
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_coefficient
https://xclim.readthedocs.io/en/latest/apidoc/xclim.ensembles.html#xclim.ensembles._robustness.robustness_coefficient
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Notes

The following attributes are required for the function to work:

• ‘cat:source’ in all datasets

• ‘cat:driving_model’ in regional climate models

• ‘cat:institution’ in all datasets if independence_level=’institution’

• ‘cat:experiment’ in all datasets if split_experiments=True

Even when not required, the ‘cat:member’ and ‘cat:experiment’ attributes are strongly recommended to ensure
the weights are computed correctly.

Returns
xr.DataArray – Weights along the ‘realization’ dimension, or 2D weights along the ‘realization’
and ‘time/horizon’ dimensions if skipna=False.

xscen.extract module

Functions to find and extract data from a catalog.

xscen.extract.extract_dataset(catalog: DataCatalog, *, variables_and_freqs: dict | None = None, periods:
list[str] | list[list[str]] | None = None, region: dict | None = None, to_level:
str = 'extracted', ensure_correct_time: bool = True, xr_open_kwargs: dict |
None = None, xr_combine_kwargs: dict | None = None, preprocess: Callable
| None = None, resample_methods: dict | None = None, mask: bool | Dataset
| DataArray = False)→ dict

Take one element of the output of search_data_catalogs and returns a dataset, performing conversions and re-
sampling as needed.

Nothing is written to disk within this function.

Parameters

• catalog (DataCatalog) – Sub-catalog for a single dataset, one value of the output of
search_data_catalogs.

• variables_and_freqs (dict, optional) – Variables and freqs, following a ‘variable: xrfreq-
compatible str’ format. A list of strings can also be provided. If None, it will be read
from catalog._requested_variables and catalog._requested_variable_freqs (set by vari-
ables_and_freqs in search_data_catalogs)

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
for the periods to be evaluated. Will be read from catalog._requested_periods if None.
Leave both None to extract everything.

• region (dict, optional) – Description of the region and the subsetting method (required
fields listed in the Notes) used in xscen.spatial.subset.

• to_level (str) – The processing level to assign to the output. Defaults to ‘extracted’

• ensure_correct_time (bool) – When True (default), even if the data has the correct fre-
quency, its time coordinate is checked so that it exactly matches the frequency code (xr-
freq). For example, daily data given at noon would be transformed to be given at midnight.
If the time coordinate is invalid, it raises an error.

• xr_open_kwargs (dict, optional) – A dictionary of keyword arguments to pass to Data-
Catalogs.to_dataset_dict, which will be passed to xr.open_dataset.

148 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

• xr_combine_kwargs (dict, optional) – A dictionary of keyword arguments to pass to
DataCatalogs.to_dataset_dict, which will be passed to xr.combine_by_coords.

• preprocess (callable, optional) – If provided, call this function on each dataset prior to
aggregation.

• resample_methods (dict, optional) – Dictionary where the keys are the variables
and the values are the resampling method. Options for the resampling method are
{‘mean’, ‘min’, ‘max’, ‘sum’, ‘wind_direction’}. If the method is not given for a
variable, it is guessed from the variable name and frequency, using the mapping in
CVs/resampling_methods.json. If the variable is not found there, “mean” is used by de-
fault.

• mask (xr.Dataset or xr.DataArray or bool) – A mask that is applied to all variables and
only keeps data where it is True. Where the mask is False, variable values are replaced by
NaNs. The mask should have the same dimensions as the variables extracted. If mask is
a dataset, the dataset should have a variable named ‘mask’. If mask is True, it will expect
a mask variable at xrfreq fx to have been extracted.

Returns
dict – Dictionary (keys = xrfreq) with datasets containing all available and computed variables,
subsetted to the region, everything resampled to the requested frequency.

Notes

‘region’ fields:

name: str
Region name used to overwrite domain in the catalog.

method: str
[‘gridpoint’, ‘bbox’, shape’, ‘sel’]

tile_buffer: float, optional
Multiplier to apply to the model resolution.

kwargs
Arguments specific to the method used.

See also:

intake_esm.core.esm_datastore.to_dataset_dict, xarray.open_dataset, xarray.
combine_by_coords

xscen.extract.get_warming_level(realization: Dataset | DataArray | dict | Series | DataFrame | str | list, wl:
float, *, window: int = 20, tas_baseline_period: Sequence[str] | None =
None, ignore_member: bool = False, tas_src: str | PathLike | None =
None, return_horizon: bool = True)→ dict | list[str] | str

Use the IPCC Atlas method to return the window of time over which the requested level of global warming is
first reached.

Parameters

• realization (xr.Dataset, xr.DataArray, dict, str, Series or sequence of those) – Model
to be evaluated. Needs the four fields mip_era, source, experiment and mem-
ber, as a dict or in a Dataset’s attributes. Strings should follow this formatting:
{mip_era}_{source}_{experiment}_{member}. Lists of dicts, strings or Datasets are also
accepted, in which case the output will be a dict. Regex wildcards (.*) are accepted, but
may lead to unexpected results. Datasets should include the catalogue attributes (starting

2.11. xscen 149

https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset
https://docs.xarray.dev/en/stable/generated/xarray.combine_by_coords.html#xarray.combine_by_coords
https://docs.xarray.dev/en/stable/generated/xarray.combine_by_coords.html#xarray.combine_by_coords
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

by “cat:”) required to create such a string: ‘cat:mip_era’, ‘cat:experiment’, ‘cat:member’,
and either ‘cat:source’ for global models or ‘cat:driving_model’ for regional models. e.g.
‘CMIP5_CanESM2_rcp85_r1i1p1’

• wl (float) – Warming level. e.g. 2 for a global warming level of +2 degree Celsius above
the mean temperature of the tas_baseline_period.

• window (int) – Size of the rolling window in years over which to compute the warming
level.

• tas_baseline_period (list, optional) – [start, end] of the base period. The warming is
calculated with respect to it. The default is [“1850”, “1900”].

• ignore_member (bool) – Decides whether to ignore the member when searching for the
model run in tas_csv.

• tas_src (str, optional) – Path to a netCDF of annual global mean temperature (tas) with
an annual “time” dimension and a “simulation” dimension with the following coordi-
nates: “mip_era”, “source”, “experiment” and “member”. If None, it will default to
data/IPCC_annual_global_tas.nc which was built from the IPCC atlas data from Itur-
bide et al., 2020 (https://doi.org/10.5194/essd-12-2959-2020) and extra data for missing
CMIP6 models and pilot models of CRCM5 and ClimEx.

• return_horizon (bool) – If True, the output will be a list following the format [‘start_yr’,
‘end_yr’] If False, the output will be a string representing the middle of the period.

Returns
dict, list or str – If realization is not a sequence, the output will follow the format indicated by
return_horizon. If realization is a sequence, the output will be a list or dictionary depending
on output, with values following the format indicated by return_horizon.

xscen.extract.resample(da: DataArray, target_frequency: str, *, ds: Dataset | None = None, method: str |
None = None, missing: str | dict | None = None)→ DataArray

Aggregate variable to the target frequency.

If the input frequency is greater than a week, the resampling operation is weighted by the number of days in each
sampling period.

Parameters

• da (xr.DataArray) – DataArray of the variable to resample, must have a “time” dimension
and be of a finer temporal resolution than “target_frequency”.

• target_frequency (str) – The target frequency/freq str, must be one of the frequency sup-
ported by xarray.

• ds (xr.Dataset, optional) – The “wind_direction” resampling method needs extra vari-
ables, which can be given here.

• method ({‘mean’, ‘min’, ‘max’, ‘sum’, ‘wind_direction’}, optional) – The resampling
method. If None (default), it is guessed from the variable name and frequency, using
the mapping in CVs/resampling_methods.json. If the variable is not found there, “mean”
is used by default.

• missing ({‘mask’, ‘drop’} or dict, optional) – If ‘mask’ or ‘drop’, target periods that would
have been computed from fewer timesteps than expected are masked or dropped, using a
threshold of 5% of missing data. E.g. the first season of a target_frequency of “QS-DEC”
will be masked or dropped if data starts in January. If a dict, points to a xclim check
missing method which will mask periods according to the number of NaN values. The
dict must contain a “method” field corresponding to the xclim method name and may
contain any other args to pass. Options are documented in xclim.core.missing.

150 Chapter 2. Features

https://doi.org/10.5194/essd-12-2959-2020
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#module-xclim.core.missing


xscen Documentation, Release 0.7.25-beta

Returns
xr.DataArray – Resampled variable

xscen.extract.search_data_catalogs(data_catalogs: str | PathLike | DataCatalog | list[str | PathLike |
DataCatalog], variables_and_freqs: dict, *, other_search_criteria:
dict | None = None, exclusions: dict | None = None,
match_hist_and_fut: bool = False, periods: list[str] | list[list[str]] |
None = None, coverage_kwargs: dict | None = None, id_columns:
list[str] | None = None, allow_resampling: bool = False,
allow_conversion: bool = False, conversion_yaml: str | None = None,
restrict_resolution: str | None = None, restrict_members: dict | None =
None, restrict_warming_level: dict | bool | None = None)→ dict

Search through DataCatalogs.

Parameters

• data_catalogs (str, os.PathLike, DataCatalog, or a list of those) – DataCatalog (or mul-
tiple, in a list) or paths to JSON/CSV data catalogs. They must use the same columns and
aggregation options.

• variables_and_freqs (dict) – Variables and freqs to search for, following a ‘variable: xr-
freq-compatible-str’ format. A list of strings can also be provided.

• other_search_criteria (dict, optional) – Other criteria to search for in the catalogs’
columns, following a ‘column_name: list(subset)’ format. You can also pass ‘re-
quire_all_on: list(columns_name)’ in order to only return results that correspond to all
other criteria across the listed columns. More details available at https://intake-esm.
readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html .

• exclusions (dict, optional) – Same as other_search_criteria, but for eliminating results.
Any result that matches any of the exclusions will be removed.

• match_hist_and_fut (bool) – If True, historical and future simulations will be combined
into the same line, and search results lacking one of them will be rejected.

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
for the periods to be evaluated.

• coverage_kwargs (dict, optional) – Arguments to pass to subset_file_coverage (only used
when periods is not None).

• id_columns (list, optional) – List of columns used to create a id column. If None is given,
the original “id” is left.

• allow_resampling (bool) – If True (default), variables with a higher time resolution than
requested are considered.

• allow_conversion (bool) – If True (default) and if the requested variable cannot be found,
intermediate variables are searched given that there exists a converting function in the
“derived variable registry”.

• conversion_yaml (str, optional) – Path to a YAML file that defines the possible conver-
sions (used alongside ‘allow_conversion’=True). This file should follow the xclim con-
ventions for building a virtual module. If None, the “derived variable registry” will be
defined by the file in “xscen/xclim_modules/conversions.yml”

• restrict_resolution (str, optional) – Used to restrict the results to the finest/coarsest res-
olution available for a given simulation. [‘finest’, ‘coarsest’].

• restrict_members (dict, optional) – Used to restrict the results to a given number of
members for a given simulation. Currently only supports {“ordered”: int} format.

2.11. xscen 151

https://intake-esm.readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html
https://intake-esm.readthedocs.io/en/stable/how-to/enforce-search-query-criteria-via-require-all-on.html


xscen Documentation, Release 0.7.25-beta

• restrict_warming_level (bool or dict, optional) – Used to restrict the results only to
datasets that exist in the csv used to compute warming levels in subset_warming_level.
If True, this will only keep the datasets that have a mip_era, source, experiment and mem-
ber combination that exist in the csv. This does not guarantee that a given warming level
will be reached, only that the datasets have corresponding columns in the csv. More option
can be added by passing a dictionary instead of a boolean. If {‘ignore_member’:True},
it will disregard the member when trying to match the dataset to a column. If {tas_src:
Path_to_netcdf}, it will use an alternative netcdf instead of the default one provided by
xscen. If ‘wl’ is a provided key, then xs.get_warming_level will be called and only datasets
that reach the given warming level will be kept. This can be combined with other argu-
ments of the function, for example {‘wl’: 1.5, ‘window’: 30}.

Notes

• The “other_search_criteria” and “exclusions” arguments accept wildcard (*) and regular expressions.

• Frequency can be wildcarded with ‘NA’ in the variables_and_freqs dict.

• Variable names cannot be wildcarded, they must be CMIP6-standard.

Returns
dict – Keys are the id and values are the DataCatalogs for each entry. A single DataCatalog
can be retrieved with concat_data_catalogs(*out.values()). Each DataCatalog has a subset
of the derived variable registry that corresponds to the needs of this specific group. Usually,
each entry can be written to file in a single Dataset when using extract_dataset with the same
arguments.

See also:

intake_esm.core.esm_datastore.search

xscen.extract.subset_warming_level(ds: Dataset, wl: float | Sequence[float], to_level: str =
'warminglevel-{wl}vs{period0}-{period1}', wl_dim: str | bool =
'+{wl}Cvs{period0}-{period1}', **kwargs)→ Dataset | None

Subsets the input dataset with only the window of time over which the requested level of global warming is first
reached, using the IPCC Atlas method.

Parameters

• ds (xr.Dataset) – Input dataset. The dataset should include attributes to help rec-
ognize it and find its warming levels - ‘cat:mip_era’, ‘cat:experiment’, ‘cat:member’,
and either ‘cat:source’ for global models or ‘cat:driving_institution’ (optional) +
‘cat:driving_model’ for regional models. Or , it should include a realization dimen-
sion constructed as “{mip_era}_{source or driving_model}_{experiment}_{member}”
for vectorized subsetting. Vectorized subsetting is currently only implemented for annual
data.

• wl (float or sequence of floats) – Warming level. e.g. 2 for a global warming level of +2
degree Celsius above the mean temperature of the tas_baseline_period. Multiple levels
can be passed, in which case using “{wl}” in to_level and wl_dim is not recommended.
Mutliple levels are currently only implemented for annual data.

• to_level – The processing level to assign to the output. Use “{wl}”, “{period0}”
and “{period1}” in the string to dynamically include wl, ‘tas_baseline_period[0]’ and
‘tas_baseline_period[1]’.

152 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• wl_dim (str or boolean, optional) – The value to use to fill the new warminglevel dimen-
sion. Use “{wl}”, “{period0}” and “{period1}” in the string to dynamically include wl,
‘tas_baseline_period[0]’ and ‘tas_baseline_period[1]’. If None, no new dimensions will
be added, invalid if wl is a sequence. If True, the dimension will include wl as numbers
and units of “degC”.

• **kwargs – Instructions on how to search for warming levels, passed to
get_warming_level().

Returns
xr.Dataset or None – Warming level dataset, or None if ds can’t be subsetted for the requested
warming level. The dataset will have a new dimension warminglevel with wl_dim as coordi-
nates. If wl was a list or if ds had a “realization” dim, the “time” axis is replaced by a fake time
starting in 1000-01-01 and with a length of window years. Start and end years of the subsets
are bound in the new coordinate “warminglevel_bounds”.

xscen.indicators module

Functions to compute xclim indicators.

xscen.indicators.compute_indicators(ds: Dataset, indicators: str | PathLike | Sequence[Indicator] |
Sequence[tuple[str, Indicator]] | module, *, periods: list[str] |
list[list[str]] | None = None, restrict_years: bool = True, to_level: str
| None = 'indicators')→ dict

Calculate variables and indicators based on a YAML call to xclim.

The function cuts the output to be the same years as the inputs. Hence, if an indicator creates a timestep outside
the original year range (e.g. the first DJF for QS-DEC), it will not appear in the output.

Parameters

• ds (xr.Dataset) – Dataset to use for the indicators.

• indicators (Union[str, os.PathLike, Sequence[Indicator], Sequence[tuple[str, Indica-
tor]], ModuleType]) – Path to a YAML file that instructs on how to calculate missing
variables. Can also be only the “stem”, if translations and custom indices are imple-
mented. Can be the indicator module directly, or a sequence of indicators or a sequence
of tuples (indicator name, indicator) as returned by iter_indicators().

• periods (list of str or list of lists of str, optional) – Either [start, end] or list of [start, end]
of continuous periods over which to compute the indicators. This is needed when the time
axis of ds contains some jumps in time. If None, the dataset will be considered continuous.

• restrict_years (bool) – If True, cut the time axis to be within the same years as the input.
This is mostly useful for frequencies that do not start in January, such as QS-DEC. In that
instance, xclim would start on previous_year-12-01 (DJF), with a NaN. restrict_years will
cut that first timestep. This should have no effect on YS and MS indicators.

• to_level (str, optional) – The processing level to assign to the output. If None, the pro-
cessing level of the inputs is preserved.

Returns
dict – Dictionary (keys = timedeltas) with indicators separated by temporal resolution.

See also:

xclim.indicators, xclim.core.indicator.build_indicator_module_from_yaml

2.11. xscen 153

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.Indicator
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.indicator.build_indicator_module_from_yaml


xscen Documentation, Release 0.7.25-beta

xscen.indicators.load_xclim_module(filename: str | PathLike, reload: bool = False)→ module
Return the xclim module described by the yaml file (or group of yaml, jsons and py).

Parameters

• filename (str or os.PathLike) – The filepath to the yaml file of the module or to the stem
of yaml, jsons and py files.

• reload (bool) – If False (default) and the module already exists in xclim.indicators, it is
not re-build.

Returns
ModuleType – The xclim module.

xscen.io module

Input/Output functions for xscen.

xscen.io.clean_incomplete(path: str | PathLike, complete: Sequence[str])→ None
Delete un-catalogued variables from a zarr folder.

The goal of this function is to clean up an incomplete calculation. It will remove any variable in the zarr that is
neither in the complete list nor in the coords.

Parameters

• path (str, Path) – A path to a zarr folder.

• complete (sequence of strings) – Name of variables that were completed.

Returns
None

xscen.io.estimate_chunks(ds: str | PathLike | Dataset, dims: list, target_mb: float = 50, chunk_per_variable:
bool = False)→ dict

Return an approximate chunking for a file or dataset.

Parameters

• ds (xr.Dataset, str) – Either a xr.Dataset or the path to a NetCDF file. Existing chunks are
not taken into account.

• dims (list) – Dimension(s) on which to estimate the chunking. Not implemented for more
than 2 dimensions.

• target_mb (float) – Roughly the size of chunks (in Mb) to aim for.

• chunk_per_variable (bool) – If True, the output will be separated per variable. Other-
wise, a common chunking will be found.

Returns
dict – A dictionary mapping dimensions to chunk sizes.

xscen.io.get_engine(file: str | PathLike)→ str
Use functionality of h5py to determine if a NetCDF file is compatible with h5netcdf.

Parameters
file (str or os.PathLike) – Path to the file.

Returns
str – Engine to use with xarray

154 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.io.make_toc(ds: Dataset | DataArray, loc: str | None = None)→ DataFrame
Make a table of content describing a dataset’s variables.

This return a simple DataFrame with variable names as index, the long_name as “description” and units. Column
names and long names are taken from the activated locale if found, otherwise the english version is taken.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray from which to extract the relevant
metadata.

• loc (str, optional) – The locale to use. If None, either the first locale in the list of activated
xclim locales is used, or “en” if none is activated.

Returns
pd.DataFrame – A DataFrame with variables as index, and columns “description” and “units”.

xscen.io.rechunk(path_in: PathLike | str | Dataset, path_out: PathLike | str, *, chunks_over_var: dict | None =
None, chunks_over_dim: dict | None = None, worker_mem: str, temp_store: str | PathLike |
None = None, overwrite: bool = False)→ None

Rechunk a dataset into a new zarr.

Parameters

• path_in (path, str or xr.Dataset) – Input to rechunk.

• path_out (path or str) – Path to the target zarr.

• chunks_over_var (dict) – Mapping from variables to mappings from dimension name to
size. Give this argument or chunks_over_dim.

• chunks_over_dim (dict) – Mapping from dimension name to size that will be used for all
variables in ds. Give this argument or chunks_over_var.

• worker_mem (str) – The maximal memory usage of each task. When using a distributed
Client, this an approximate memory per thread. Each worker of the client should have
access to 10-20% more memory than this times the number of threads.

• temp_store (path or str, optional) – A path to a zarr where to store intermediate results.

• overwrite (bool) – If True, it will delete whatever is in path_out before doing the rechunk-
ing.

Returns
None

See also:

rechunker.rechunk

xscen.io.rechunk_for_saving(ds: Dataset, rechunk: dict)
Rechunk before saving to .zarr or .nc, generalized as Y/X for different axes lat/lon, rlat/rlon.

Parameters

• ds (xr.Dataset) – The xr.Dataset to be rechunked.

• rechunk (dict) – A dictionary with the dimension names of ds and the new chunk size.
Spatial dimensions can be provided as X/Y.

Returns
xr.Dataset – The dataset with new chunking.

2.11. xscen 155

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://rechunker.readthedocs.io/en/latest/api.html#rechunker.rechunk
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.io.round_bits(da: DataArray, keepbits: int)
Round floating point variable by keeping a given number of bits in the mantissa, dropping the rest. This allows
for a much better compression.

Parameters

• da (xr.DataArray) – Variable to be rounded.

• keepbits (int) – The number of bits of the mantissa to keep.

xscen.io.save_to_netcdf(ds: Dataset, filename: str | PathLike, *, rechunk: dict | None = None, bitround: bool |
int | dict = False, compute: bool = True, netcdf_kwargs: dict | None = None)

Save a Dataset to NetCDF, rechunking or compressing if requested.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• filename (str or os.PathLike) – Name of the NetCDF file to be saved.

• rechunk (dict, optional) – This is a mapping from dimension name to new chunks (in any
format understood by dask). Spatial dimensions can be generalized as ‘X’ and ‘Y’, which
will be mapped to the actual grid type’s dimension names. Rechunking is only done on
data variables sharing dimensions with this argument.

• bitround (bool or int or dict) – If not False, float variables are bit-rounded by dropping
a certain number of bits from their mantissa, allowing for a much better compression. If
an int, this is the number of bits to keep for all float variables. If a dict, a mapping from
variable name to the number of bits to keep. If True, the number of bits to keep is guessed
based on the variable’s name, defaulting to 12, which yields a relative error below 0.013%.

• compute (bool) – Whether to start the computation or return a delayed object.

• netcdf_kwargs (dict, optional) – Additional arguments to send to_netcdf()

Returns
None

See also:

xarray.Dataset.to_netcdf

xscen.io.save_to_table(ds: Dataset | DataArray, filename: str | PathLike, output_format: str | None = None, *,
row: str | Sequence[str] | None = None, column: None | str | Sequence[str] = 'variable',
sheet: str | Sequence[str] | None = None, coords: bool | Sequence[str] = True, col_sep:
str = '_', row_sep: str | None = None, add_toc: bool | DataFrame = False, **kwargs)

Save the dataset to a tabular file (csv, excel, . . . ).

This function will trigger a computation of the dataset.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be saved. If a Dataset with
more than one variable is given, the dimension “variable” must appear in one of row,
column or sheet.

• filename (str or os.PathLike) – Name of the file to be saved.

• output_format ({‘csv’, ‘excel’, . . . }, optional) – The output format. If None (default),
it is inferred from the extension of filename. Not all possible output format are sup-
ported for inference. Valid values are any that matches a pandas.DataFrame method
like “df.to_{format}”.

156 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.to_netcdf.html#xarray.Dataset.to_netcdf
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

• row (str or sequence of str, optional) – Name of the dimension(s) to use as indexes (rows).
Default is all data dimensions.

• column (str or sequence of str, optional) – Name of the dimension(s) to use as columns.
Default is “variable”, i.e. the name of the variable(s).

• sheet (str or sequence of str, optional) – Name of the dimension(s) to use as sheet names.
Only valid if the output format is excel.

• coords (bool or sequence of str) – A list of auxiliary coordinates to add to the columns
(as would variables). If True, all (if any) are added.

• col_sep (str,) – Multi-columns (except in excel) and sheet names are concatenated with
this separator.

• row_sep (str, optional) – Multi-index names are concatenated with this separator, except
in excel. If None (default), each level is written in its own column.

• add_toc (bool or DataFrame) – A table of content to add as the first sheet. Only valid
if the output format is excel. If True, make_toc() is used to generate the toc. The sheet
name of the toc can be given through the “name” attribute of the DataFrame, otherwise
“Content” is used.

• kwargs – Other arguments passed to the pandas function. If the output format is excel,
kwargs to pandas.ExcelWriter can be given here as well.

xscen.io.save_to_zarr(ds: Dataset, filename: str | PathLike, *, rechunk: dict | None = None, zarr_kwargs: dict
| None = None, compute: bool = True, encoding: dict | None = None, bitround: bool |
int | dict = False, mode: str = 'f', itervar: bool = False, timeout_cleanup: bool = True)

Save a Dataset to Zarr format, rechunking and compressing if requested.

According to mode, removes variables that we don’t want to re-compute in ds.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• filename (str) – Name of the Zarr file to be saved.

• rechunk (dict, optional) – This is a mapping from dimension name to new chunks (in any
format understood by dask). Spatial dimensions can be generalized as ‘X’ and ‘Y’ which
will be mapped to the actual grid type’s dimension names. Rechunking is only done on
data variables sharing dimensions with this argument.

• zarr_kwargs (dict, optional) – Additional arguments to send to_zarr()

• compute (bool) – Whether to start the computation or return a delayed object.

• mode ({‘f’, ‘o’, ‘a’}) – If ‘f’, fails if any variable already exists. if ‘o’, removes the existing
variables. if ‘a’, skip existing variables, writes the others.

• encoding (dict, optional) – If given, skipped variables are popped in place.

• bitround (bool or int or dict) – If not False, float variables are bit-rounded by dropping
a certain number of bits from their mantissa, allowing for a much better compression. If
an int, this is the number of bits to keep for all float variables. If a dict, a mapping from
variable name to the number of bits to keep. If True, the number of bits to keep is guessed
based on the variable’s name, defaulting to 12, which yields a relative error of 0.012%.

• itervar (bool) – If True, (data) variables are written one at a time, appending to the zarr.
If False, this function computes, no matter what was passed to kwargs.

2.11. xscen 157

https://pandas.pydata.org/docs/reference/api/pandas.ExcelWriter.html#pandas.ExcelWriter
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• timeout_cleanup (bool) – If True (default) and a xscen.scripting.
TimeoutException is raised during the writing, the variable being written is removed
from the dataset as it is incomplete. This does nothing if compute is False.

Returns
dask.delayed object if compute=False, None otherwise.

See also:

xarray.Dataset.to_zarr

xscen.io.subset_maxsize(ds: Dataset, maxsize_gb: float)→ list
Estimate a dataset’s size and, if higher than the given limit, subset it alongside the ‘time’ dimension.

Parameters

• ds (xr.Dataset) – Dataset to be saved.

• maxsize_gb (float) – Target size for the NetCDF files. If the dataset is bigger than this
number, it will be separated alongside the ‘time’ dimension.

Returns
list – List of xr.Dataset subsetted alongside ‘time’ to limit the filesize to the requested maxi-
mum.

xscen.io.to_table(ds: Dataset | DataArray, *, row: str | Sequence[str] | None = None, column: str |
Sequence[str] | None = None, sheet: str | Sequence[str] | None = None, coords: bool | str |
Sequence[str] = True)→ DataFrame | dict

Convert a dataset to a pandas DataFrame with support for multicolumns and multisheet.

This function will trigger a computation of the dataset.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be saved. If a Dataset with
more than one variable is given, the dimension “variable” must appear in one of row,
column or sheet.

• row (str or sequence of str, optional) – Name of the dimension(s) to use as indexes (rows).
Default is all data dimensions.

• column (str or sequence of str, optional) – Name of the dimension(s) to use as columns.
Default is “variable”, i.e. the name of the variable(s).

• sheet (str or sequence of str, optional) – Name of the dimension(s) to use as sheet names.

• coords (bool or str or sequence of str) – A list of auxiliary coordinates to add to the
columns (as would variables). If True, all (if any) are added.

Returns
pd.DataFrame or dict – DataFrame with a MultiIndex with levels row and MultiColumn with
levels column. If sheet is given, the output is dictionary with keys for each unique “sheet”
dimensions tuple, values are DataFrames. The DataFrames are always sorted with level priority
as given in row and in ascending order.

158 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.to_zarr.html#xarray.Dataset.to_zarr
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame


xscen Documentation, Release 0.7.25-beta

xscen.reduce module

Functions to reduce an ensemble of simulations.

xscen.reduce.build_reduction_data(datasets: dict | list[Dataset], *, xrfreqs: list[str] | None = None,
horizons: list[str] | None = None)→ DataArray

Construct the input required for ensemble reduction.

This will combine all variables into a single DataArray and stack all dimensions except “realization”.

Parameters

• datasets (Union[dict, list]) – Dictionary of datasets in the format {“id”: dataset}, or list
of datasets. This can be generated by calling .to_dataset_dict() on a catalog.

• xrfreqs (list of str, optional) – List of unique frequencies across the datasets. If None,
the script will attempt to guess the frequencies from the datasets’ metadata or with
xr.infer_freq().

• horizons (list of str, optional) – Subset of horizons on which to create the data.

Returns
xr.DataArray – 2D DataArray of dimensions “realization” and “criteria”, to be used as input
for ensemble reduction.

xscen.reduce.reduce_ensemble(data: DataArray, method: str, kwargs: dict)
Reduce an ensemble of simulations using clustering algorithms from xclim.ensembles.

Parameters

• data (xr.DataArray) – Selection criteria data : 2-D xr.DataArray with dimensions ‘real-
ization’ and ‘criteria’. These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm. This data can be generated using build_reduction_data().

• method (str) – [‘kkz’, ‘kmeans’]. Clustering method.

• kwargs (dict) – Arguments to send to either xclim.ensembles.kkz_reduce_ensemble or
xclim.ensembles.kmeans_reduce_ensemble

Returns

• selected (xr.DataArray) – DataArray of dimension ‘realization’ with the selected simula-
tions.

• clusters (dict) – If using kmeans clustering, realizations grouped by cluster.

• fig_data (dict) – If using kmeans clustering, data necessary to call
xclim.ensembles.plot_rsqprofile()

xscen.regrid module

Functions to regrid datasets.

xscen.regrid.create_mask(ds: Dataset | DataArray, mask_args: dict)→ DataArray
Create a 0-1 mask based on incoming arguments.

Parameters

• ds (xr.Dataset or xr.DataArray) – Dataset or DataArray to be evaluated

• mask_args (dict) – Instructions to build the mask (required fields listed in the Notes).

2.11. xscen 159

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

Note:

‘mask’ fields:

variable: str, optional
Variable on which to base the mask, if ds_mask is not a DataArray.

where_operator: str, optional
Conditional operator such as ‘>’

where_threshold: str, optional
Value threshold to be used in conjunction with where_operator.

mask_nans: bool
Whether to apply a mask on NaNs.

Returns
xr.DataArray – Mask array.

xscen.regrid.regrid_dataset(ds: Dataset, ds_grid: Dataset, weights_location: str | PathLike, *,
regridder_kwargs: dict | None = None, intermediate_grids: dict | None = None,
to_level: str = 'regridded')→ Dataset

Regrid a dataset according to weights and a reference grid.

Based on an intake_esm catalog, this function performs regridding on Zarr files.

Parameters

• ds (xarray.Dataset) – Dataset to regrid. The Dataset needs to have lat/lon coordinates.
Supports a ‘mask’ variable compatible with ESMF standards.

• weights_location (Union[str, os.PathLike]) – Path to the folder where weight file is saved.

• ds_grid (xr.Dataset) – Destination grid. The Dataset needs to have lat/lon coordinates.
Supports a ‘mask’ variable compatible with ESMF standards.

• regridder_kwargs (dict, optional) – Arguments to send xe.Regridder(). If it contains
skipna or out_chunks, those are passed to the regridder call directly.

• intermediate_grids (dict, optional) – This argument is used to do a regridding in many
steps, regridding to regular grids before regridding to the final ds_grid. This is useful
when there is a large jump in resolution between ds and ds grid. The format is a nested
dictionary shown in Notes. If None, no intermediary grid is used, there is only a regrid
from ds to ds_grid.

• to_level (str) – The processing level to assign to the output. Defaults to ‘regridded’

Returns
xarray.Dataset – Regridded dataset

160 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

Notes

intermediate_grids =

{‘name_of_inter_grid_1’: {‘cf_grid_2d’: {arguments for util.cf_grid_2d
},’regridder_kwargs’:{arguments for xe.Regridder}},

‘name_of_inter_grid_2’: dictionary_as_above}

See also:

xesmf.regridder, xesmf.util.cf_grid_2d

xscen.scripting module

A collection of various convenience objects and functions to use in scripts.

exception xscen.scripting.TimeoutException(seconds: int, task: str = '', **kwargs)
Bases: Exception

An exception raised with a timeout occurs.

class xscen.scripting.measure_time(name: str | None = None, cpu: bool = False, logger: ~logging.Logger
= <Logger xscen.scripting (INFO)>)

Bases: object

Context for timing a code block.

Parameters

• name (str, optional) – A name to give to the block being timed, for meaningful logging.

• cpu (boolean) – If True, the CPU time is also measured and logged.

• logger (logging.Logger, optional) – The logger object to use when sending Info messages
with the measured time. Defaults to a logger from this module.

xscen.scripting.move_and_delete(moving: list[list[str | PathLike]], pcat: ProjectCatalog, deleting: list[str |
PathLike] | None = None, copy: bool = False)

First, move files, then update the catalog with new locations. Finally, delete directories.

This function can be used at the end of for loop in a workflow to clean temporary files.

Parameters

• moving (list of lists of str or os.PathLike) – list of lists of path of files to move, following
the format: [[source 1, destination1], [source 2, destination2],. . . ]

• pcat (ProjectCatalog) – Catalog to update with new destinations

• deleting (list of str or os.PathLike, optional) – list of directories to be deleted including
all contents and recreated empty. E.g. the working directory of a workflow.

• copy (bool, optional) – If True, copy directories instead of moving them.

xscen.scripting.save_and_update(ds: Dataset, pcat: ProjectCatalog, path: str | PathLike | None = None,
file_format: str | None = None, build_path_kwargs: dict | None = None,
save_kwargs: dict | None = None, update_kwargs: dict | None = None)

Construct the path, save and delete.

This function can be used after each task of a workflow.

Parameters

2.11. xscen 161

https://pangeo-xesmf.readthedocs.io/en/latest/user_api.html#xesmf.util.cf_grid_2d
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• ds (xr.Dataset) – Dataset to save.

• pcat (ProjectCatalog) – Catalog to update after saving the dataset.

• path (str or os.pathlike, optional) – Path where to save the dataset. If the string con-
tains variables in curly bracket. They will be filled by catalog attributes. If None, the
catutils.build_path fonction will be used to create a path.

• file_format ({‘nc’, ‘zarr’}) – Format of the file. If None, look for the following in order:
build_path_kwargs[‘format’], a suffix in path, ds.attrs[‘cat:format’]. If nothing is found,
it will default to zarr.

• build_path_kwargs (dict, optional) – Arguments to pass to build_path.

• save_kwargs (dict, optional) – Arguments to pass to save_to_netcdf or save_to_zarr.

• update_kwargs (dict, optional) – Arguments to pass to update_from_ds.

xscen.scripting.send_mail(*, subject: str, msg: str, to: str | None = None, server: str = '127.0.0.1', port: int =
25, attachments: list[tuple[str, Figure | PathLike] | Figure | PathLike] | None =
None)→ None

Send email.

Email a single address through a login-less SMTP server. The default values of server and port should work
out-of-the-box on Ouranos’s systems.

Parameters

• subject (str) – Subject line.

• msg (str) – Main content of the email. Can be UTF-8 and multi-line.

• to (str, optional) – Email address to which send the email. If None (default), the email
is sent to “{os.getlogin()}@{os.uname().nodename}”. On unix systems simply put your
real email address in $HOME/.forward to receive the emails sent to this local address.

• server (str) – SMTP server url. Defaults to 127.0.0.1, the local host. This function does
not try to log-in.

• port (int) – Port of the SMTP service on the server. Defaults to 25, which is usually the
default port on unix-like systems.

• attachments (list of paths or matplotlib figures or tuples of a string and a path or figure,
optional) – List of files to attach to the email. Elements of the list can be paths, the mime-
types of those is guessed and the files are read and sent. Elements can also be matplotlib
Figures which are send as png image (savefig) with names like “Figure00.png”. Finally,
elements can be tuples of a filename to use in the email and the attachment, handled as
above.

Returns
None

xscen.scripting.send_mail_on_exit(*, subject: str | None = None, msg_ok: str | None = None, msg_err: str |
None = None, on_error_only: bool = False, skip_ctrlc: bool = True,
**mail_kwargs)→ None

Send an email with content depending on how the system exited.

This function is best used by registering it with atexit. Calls send_mail().

Parameters

• subject (str, optional) – Email subject. Will be appended by “Success”, “No errors” or
“Failure” depending on how the system exits.

162 Chapter 2. Features



xscen Documentation, Release 0.7.25-beta

• msg_ok (str, optional) – Content of the email if the system exists successfully.

• msg_err (str, optional) – Content of the email id the system exists with a non-zero code or
with an error. The message will be appended by the exit code or with the error traceback.

• on_error_only (boolean) – Whether to only send an email on a non-zero/error exit.

• skip_ctrlc (boolean) – If True (default), exiting with a KeyboardInterrupt will not send
an email.

• mail_kwargs – Other arguments passed to send_mail(). The to argument is necessary
for this function to work.

Returns
None

Example

Send an eamil titled “Woups” upon non-successful program exit. We assume the to field was given in the config.

>>> import atexit
>>> atexit.register(send_mail_on_exit, subject="Woups", on_error_only=True)

xscen.scripting.skippable(seconds: int = 2, task: str = '', logger: Logger | None = None)
Skippable context manager.

When CTRL-C (SIGINT, KeyboardInterrupt) is sent within the context, this catches it, prints to the log and gives
a timeout during which a subsequent interruption will stop the script. Otherwise, the context exits normally.

This is meant to be used within a loop so that we can skip some iterations:

for i in iterable:
with skippable(2, i):

some_skippable_code()

Parameters

• seconds (int) – Number of seconds to wait for a second CTRL-C.

• task (str) – A name for the skippable task, to have an explicit script.

• logger (logging.Logger, optional) – The logger to use when printing the messages. The
interruption signal is notified with ERROR, while the skipping is notified with INFO. If
not given (default), a brutal print is used.

xscen.scripting.timeout(seconds: int, task: str = '')
Timeout context manager.

Only one can be used at a time, this is not multithread-safe : it cannot be used in another thread than the main
one, but multithreading can be used in parallel.

Parameters

• seconds (int) – Number of seconds after which the context exits with a TimeoutException.
If None or negative, no timeout is set and this context does nothing.

• task (str, optional) – A name to give to the task, allowing a more meaningful exception.

2.11. xscen 163



xscen Documentation, Release 0.7.25-beta

xscen.spatial module

Spatial tools.

xscen.spatial.creep_fill(da: DataArray, w: DataArray)→ DataArray
Creep fill using pre-computed weights.

Parameters

• da (DataArray) – A DataArray sharing the dimensions with the one used to compute the
weights. It can have other dimensions. Dask is supported as long as there are no chunks
over the creeped dims.

• w (DataArray) – The result of creep_weights.

Returns
xarray.DataArray, same shape as da, but values filled according to w.

Examples

>>> w = creep_weights(da.isel(time=0).notnull(), n=1)
>>> da_filled = creep_fill(da, w)

xscen.spatial.creep_weights(mask: DataArray, n: int = 1, mode: str = 'clip')→ DataArray
Compute weights for the creep fill.

The output is a sparse matrix with the same dimensions as mask, twice.

Parameters

• mask (DataArray) – A boolean DataArray. False values are candidates to the filling.
Usually they represent missing values (mask = da.notnull()). All dimensions are creep
filled.

• n (int) – The order of neighbouring to use. 1 means only the adjacent grid cells are used.

• mode ({‘clip’, ‘wrap’}) – If a cell is on the edge of the domain, mode=’wrap’ will wrap
around to find neighbours.

Returns
DataArray – Weights. The dot product must be taken over the last N dimensions.

xscen.spatial.subset(ds: Dataset, region: dict | None = None, *, name: str | None = None, method: str | None
= None, tile_buffer: float = 0, **kwargs)→ Dataset

Subset the data to a region.

Either creates a slice and uses the .sel() method, or customizes a call to clisops.subset() that allows for an auto-
matic buffer around the region.

Parameters

• ds (xr.Dataset) – Dataset to be subsetted.

• region (dict) – Deprecated argument that is there for legacy reasons and will be abandoned
eventually.

• name (str, optional) – Used to rename the ‘cat:domain’ attribute.

• method (str) – [‘gridpoint’, ‘bbox’, shape’,’sel’] If the method is sel, this is not a call to
clisops but only a subsetting with the xarray .sel() fonction.

164 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• tile_buffer (float) – For [‘bbox’, shape’], uses an approximation of the grid cell size to
add a buffer around the requested region. This differs from clisops’ ‘buffer’ argument in
subset_shape().

• kwargs (dict) – Arguments to be sent to clisops. If the method is sel, the keys are the
dimensions to subset and the values are turned into a slice.

Returns
xr.Dataset – Subsetted Dataset.

See also:

clisops.core.subset.subset_gridpoint, clisops.core.subset.subset_bbox, clisops.core.
subset.subset_shape

xscen.testing module

Testing utilities for xscen.

xscen.testing.datablock_3d(values: ndarray, variable: str, x: str, x_start: float, y: str, y_start: float, x_step:
float = 0.1, y_step: float = 0.1, start: str = '7/1/2000', freq: str = 'D', units: str |
None = None, as_dataset: bool = False)→ DataArray | Dataset

Create a generic timeseries object based on pre-defined dictionaries of existing variables.

Parameters

• values (np.ndarray) – The values to be assigned to the variable. Dimensions are inter-
preted [T, Y, X].

• variable (str) – The variable name.

• x (str) – The name of the x coordinate.

• x_start (float) – The starting value of the x coordinate.

• y (str) – The name of the y coordinate.

• y_start (float) – The starting value of the y coordinate.

• x_step (float) – The step between x values.

• y_step (float) – The step between y values.

• start (str) – The starting date of the time coordinate.

• freq (str) – The frequency of the time coordinate.

• units (str, optional) – The units of the variable. If None, the units are inferred from the
variable name.

• as_dataset (bool) – If True, return a Dataset, else a DataArray.

xscen.testing.fake_data(nyears: int, nx: int, ny: int, rand_type: str = 'random', seed: int = 0, amplitude: float
= 1.0, offset: float = 0.0)→ ndarray

Generate fake data for testing.

Parameters

• nyears (int) – Number of years (365 days) to generate.

• nx (int) – Number of x points.

• ny (int) – Number of y points.

2.11. xscen 165

https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_gridpoint
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_bbox
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_shape
https://clisops.readthedocs.io/en/latest/api.html#clisops.core.subset.subset_shape
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• rand_type (str) – Type of random data to generate. Options are: - “random”: random
data with no structure. - “tas”: temperature-like data with a yearly half-sine cycle.

• seed (int) – Random seed.

• amplitude (float) – Amplitude of the random data.

• offset (float) – Offset of the random data.

Returns
np.ndarray – Fake data.

xscen.utils module

Common utilities to be used in many places.

xscen.utils.add_attr(ds: Dataset | DataArray, attr: str, new: str, **fmt)
Add a formatted translatable attribute to a dataset.

xscen.utils.change_units(ds: Dataset, variables_and_units: dict)→ Dataset
Change units of Datasets to non-CF units.

Parameters

• ds (xr.Dataset) – Dataset to use

• variables_and_units (dict) – Description of the variables and units to output

Returns
xr.Dataset

See also:

xclim.core.units.convert_units_to, xclim.core.units.rate2amount

xscen.utils.clean_up(ds: Dataset, *, variables_and_units: dict | None = None, convert_calendar_kwargs: dict
| None = None, missing_by_var: dict | None = None, maybe_unstack_dict: dict | None =
None, round_var: dict | None = None, common_attrs_only: dict | list[Dataset | str |
PathLike] | None = None, common_attrs_open_kwargs: dict | None = None,
attrs_to_remove: dict | None = None, remove_all_attrs_except: dict | None = None,
add_attrs: dict | None = None, change_attr_prefix: str | None = None, to_level: str |
None = None)→ Dataset

Clean up of the dataset.

It can:

• convert to the right units using xscen.finalize.change_units

• convert the calendar and interpolate over missing dates

• call the xscen.common.maybe_unstack function

• remove a list of attributes

• remove everything but a list of attributes

• add attributes

• change the prefix of the catalog attrs

in that order.

Parameters

166 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.units.convert_units_to
https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.units.rate2amount
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• ds (xr.Dataset) – Input dataset to clean up

• variables_and_units (dict, optional) – Dictionary of variable to convert. eg. {‘tasmax’:
‘degC’, ‘pr’: ‘mm d-1’}

• convert_calendar_kwargs (dict, optional) – Dictionary of arguments to feed to
xclim.core.calendar.convert_calendar. This will be the same for all variables. If miss-
ing_by_vars is given, it will override the ‘missing’ argument given here. Eg. {target’:
default, ‘align_on’: ‘random’}

• missing_by_var (dict, optional) – Dictionary where the keys are the vari-
ables and the values are the argument to feed the missing parameters of
the xclim.core.calendar.convert_calendar for the given variable with the con-
vert_calendar_kwargs. When the value of an entry is ‘interpolate’, the missing
values will be filled with NaNs, then linearly interpolated over time.

• maybe_unstack_dict (dict, optional) – Dictionary to pass to xs-
cen.common.maybe_unstack function. The format should be: {‘coords’:
path_to_coord_file, ‘rechunk’: {‘time’: -1 }, ‘stack_drop_nans’: True}.

• round_var (dict, optional) – Dictionary where the keys are the variables of the dataset
and the values are the number of decimal places to round to

• common_attrs_only (dict, list of datasets, or list of paths, optional) – Dictionnary of
datasets or list of datasets, or path to NetCDF or Zarr files. Keeps only the global attributes
that are the same for all datasets and generates a new id.

• common_attrs_open_kwargs (dict, optional) – Dictionary of arguments for xar-
ray.open_dataset(). Used with common_attrs_only if given paths.

• attrs_to_remove (dict, optional) – Dictionary where the keys are the variables and the
values are a list of the attrs that should be removed. For global attrs, use the key ‘global’.
The element of the list can be exact matches for the attributes name or use the same sub-
string matching rules as intake_esm: - ending with a ‘*’ means checks if the substring
is contained in the string - starting with a ‘^’ means check if the string starts with the
substring. eg. {‘global’: [‘unnecessary note’, ‘cell*’], ‘tasmax’: ‘old_name’}

• remove_all_attrs_except (dict, optional) – Dictionary where the keys are the variables
and the values are a list of the attrs that should NOT be removed, all other attributes
will be deleted. If None (default), nothing will be deleted. For global attrs, use the key
‘global’. The element of the list can be exact matches for the attributes name or use the
same substring matching rules as intake_esm: - ending with a ‘*’ means checks if the
substring is contained in the string - starting with a ‘^’ means check if the string starts
with the substring. eg. {‘global’: [‘necessary note’, ‘^cat:’], ‘tasmax’: ‘new_name’}

• add_attrs (dict, optional) – Dictionary where the keys are the variables and the values
are a another dictionary of attributes. For global attrs, use the key ‘global’. eg. {‘global’:
{‘title’: ‘amazing new dataset’}, ‘tasmax’: {‘note’: ‘important info about tasmax’}}

• change_attr_prefix (str, optional) – Replace “cat:” in the catalog global attrs by this new
string

• to_level (str, optional) – The processing level to assign to the output.

Returns
xr.Dataset – Cleaned up dataset

See also:

xclim.core.calendar.convert_calendar

2.11. xscen 167

https://xclim.readthedocs.io/en/latest/apidoc/xclim.core.html#xclim.core.calendar.convert_calendar


xscen Documentation, Release 0.7.25-beta

xscen.utils.date_parser(date: str | datetime | Timestamp | datetime | Period, *, end_of_period: bool | str =
False, out_dtype: str = 'datetime', strtime_format: str = '%Y-%m-%d', freq: str =
'H')→ str | Period | Timestamp

Return a datetime from a string.

Parameters

• date (str, cftime.datetime, pd.Timestamp, datetime.datetime, pd.Period) – Date to be con-
verted

• end_of_period (bool or str) – If ‘Y’ or ‘M’, the returned date will be the end of the year
or month that contains the received date. If True, the period is inferred from the date’s
precision, but date must be a string, otherwise nothing is done.

• out_dtype (str) – Choices are ‘datetime’, ‘period’ or ‘str’

• strtime_format (str) – If out_dtype==’str’, this sets the strftime format

• freq (str) – If out_dtype==’period’, this sets the frequency of the period.

Returns
pd.Timestamp, pd.Period, str – Parsed date

xscen.utils.get_cat_attrs(ds: Dataset | DataArray | dict, prefix: str = 'cat:', var_as_str=False)→ dict
Return the catalog-specific attributes from a dataset or dictionary.

Parameters

• ds (xr.Dataset, dict) – Dataset to be parsed. If a dictionary, it is assumed to be the attributes
of the dataset (ds.attrs).

• prefix (str) – Prefix automatically generated by intake-esm. With xscen, this should be
‘cat:’

• var_as_str (bool) – If True, ‘variable’ will be returned as a string if there is only one.

Returns
dict – Compilation of all attributes in a dictionary.

xscen.utils.maybe_unstack(ds: Dataset, coords: str | None = None, rechunk: dict | None = None,
stack_drop_nans: bool = False)→ Dataset

If stack_drop_nans is True, unstack and rechunk.

Parameters

• ds (xr.Dataset) – Dataset to unstack.

• coords (str, optional) – Path to a dataset containing the coords to unstack (and only those).

• rechunk (dict, optional) – If not None, rechunk the dataset after unstacking.

• stack_drop_nans (bool) – If True, unstack the dataset and rechunk it. If False, do nothing.

Returns
xr.Dataset – Unstacked dataset.

xscen.utils.minimum_calendar(*calendars)→ str
Return the minimum calendar from a list.

Uses the hierarchy: 360_day < noleap < standard < all_leap, and returns one of those names.

xscen.utils.natural_sort(_list: list[str])
For strings of numbers. alternative to sorted() that detects a more natural order.

e.g. [r3i1p1, r1i1p1, r10i1p1] is sorted as [r1i1p1, r3i1p1, r10i1p1] instead of [r10i1p1, r1i1p1, r3i1p1]

168 Chapter 2. Features

https://pandas.pydata.org/docs/reference/api/pandas.Timestamp.html#pandas.Timestamp
https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period
https://pandas.pydata.org/docs/reference/api/pandas.Period.html#pandas.Period
https://pandas.pydata.org/docs/reference/api/pandas.Timestamp.html#pandas.Timestamp
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.utils.publish_release_notes(style: str = 'md', file: PathLike | StringIO | TextIO | None = None,
changes: str | PathLike = None)→ str | None

Format release history in Markdown or ReStructuredText.

Parameters

• style ({“rst”, “md”}) – Use ReStructuredText (rst) or Markdown (md) formatting. De-
fault: Markdown.

• file ({os.PathLike, StringIO, TextIO, None}) – If provided, prints to the given file-like
object. Otherwise, returns a string.

• changes ({str, os.PathLike}, optional) – If provided, manually points to the file where the
changelog can be found. Assumes a relative path otherwise.

Returns
str, optional

Notes

This function exists solely for development purposes. Adapted from xclim.testing.utils.publish_release_notes.

xscen.utils.stack_drop_nans(ds: Dataset, mask: DataArray, *, new_dim: str = 'loc', to_file: str | None =
None)→ Dataset

Stack dimensions into a single axis and drops indexes where the mask is false.

Parameters

• ds (xr.Dataset) – A dataset with the same coords as mask.

• mask (xr.DataArray) – A boolean DataArray with True on the points to keep. Mask will
be loaded within this function.

• new_dim (str) – The name of the new stacked dim.

• to_file (str, optional) – A netCDF filename where to write the stacked coords for use in
unstack_fill_nan. If given a string with {shape} and {domain}, the formatting will fill
them with the original shape of the dataset and the global attributes ‘cat:domain’. If None
(default), nothing is written to disk. It is recommended to fill this argument in the config.
It will be parsed automatically. E.g.:

utils:

stack_drop_nans:
to_file: /some_path/coords/coords_{domain}_{shape}.nc

unstack_fill_nan:
coords: /some_path/coords/coords_{domain}_{shape}.nc

Returns
xr.Dataset – Same as ds, but all dimensions of mask have been stacked to a single new_dim.
Indexes where mask is False have been dropped.

See also:

unstack_fill_nan
The inverse operation.

2.11. xscen 169

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

xscen.utils.standardize_periods(periods: list[str] | list[list[str]] | None, multiple: bool = True)→ list[str] |
list[list[str]] | None

Reformats the input to a list of strings, [‘start’, ‘end’], or a list of such lists.

Parameters

• periods (list of str or list of lists of str, optional) – The period(s) to standardize. If None,
return None.

• multiple (bool) – If True, return a list of periods, otherwise return a single period.

xscen.utils.translate_time_chunk(chunks: dict, calendar: str, timesize)→ dict
Translate chunk specification for time into a number.

-1 translates to timesize ‘Nyear’ translates to N times the number of days in a year of calendar calendar.

xscen.utils.unstack_dates(ds: Dataset, seasons: dict[int, str] | None = None, new_dim: str = 'season',
winter_starts_year: bool = False)

Unstack a multi-season timeseries into a yearly axis and a season one.

Parameters

• ds (xr.Dataset or DataArray) – The xarray object with a “time” coordinate. Only sup-
ports monthly or coarser frequencies. The time axis must be complete and regular
(xr.infer_freq(ds.time) doesn’t fail).

• seasons (dict, optional) – A dictionary from month number (as int) to a season name. If
not given, it is guessed from the time coord’s frequency. See notes.

• new_dim (str) – The name of the new dimension.

• winter_starts_year (bool) – If True, the year of winter (DJF) is built from the year of
January, not December. i.e. DJF made from [Dec 1980, Jan 1981, and Feb 1981] will be
associated with the year 1981, not 1980.

Returns
xr.Dataset or DataArray – Same as ds but the time axis is now yearly (AS-JAN) and the seasons
are along the new dimension.

Notes

When season is None, the inferred frequency determines the new coordinate:

• For MS, the coordinates are the month abbreviations in english (JAN, FEB, etc.)

• For ?QS-? and other ?MS frequencies, the coordinates are the initials of the months in each season. Ex:
QS-DEC (with winter_starts_year=True) : DJF, MAM, JJA, SON.

• For YS or AS-JAN, the new coordinate has a single value of “annual”.

• For ?AS-? frequencies, the new coordinate has a single value of “annual-{anchor}”, were “anchor” is the
abbreviation of the first month of the year. Ex: AS-JUL -> “annual-JUL”.

xscen.utils.unstack_fill_nan(ds: Dataset, *, dim: str = 'loc', coords: str | PathLike | Sequence[str |
PathLike] | dict | None = None)

Unstack a Dataset that was stacked by stack_drop_nans().

Parameters

• ds (xr.Dataset) – A dataset with some dims stacked by stack_drop_nans.

• dim (str) – The dimension to unstack, same as new_dim in stack_drop_nans.

170 Chapter 2. Features

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset


xscen Documentation, Release 0.7.25-beta

• coords (Sequence of strings, Mapping of str to array, str, optional) – If a sequence : if the
dataset has coords along dim that are not original dimensions, those original dimensions
must be listed here. If a dict : a mapping from the name to the array of the coords to
unstack If a str : a filename to a dataset containing only those coords (as coords). If given
a string with {shape} and {domain}, the formatting will fill them with the original shape
of the dataset (that should have been store in the attributes of the stacked dimensions)
by stack_drop_nans and the global attributes ‘cat:domain’. It is recommended to fill this
argument in the config. It will be parsed automatically. E.g.:

utils:

stack_drop_nans:
to_file: /some_path/coords/coords_{domain}_{shape}.nc

unstack_fill_nan:
coords: /some_path/coords/coords_{domain}_{shape}.nc

If None (default), all coords that have dim a single dimension are used as the new dimen-
sions/coords in the unstacked output. Coordinates will be loaded within this function.

Returns
xr.Dataset – Same as ds, but dim has been unstacked to coordinates in coords. Missing ele-
ments are filled according to the defaults of fill_value of xarray.Dataset.unstack().

xscen.utils.update_attr(ds: Dataset | DataArray, attr: str, new: str, others: Sequence[Dataset | DataArray] |
None = None, **fmt)→ Dataset | DataArray

Format an attribute referencing itself in a translatable way.

Parameters

• ds (Dataset or DataArray) – The input object with the attribute to update.

• attr (str) – Attribute name.

• new (str) – New attribute as a template string. It may refer to the old version of the attribute
with the “{attr}” field.

• others (Sequence of Datasets or DataArrays) – Other objects from which we can extract
the attribute attr. These can be referenced as “{attrXX}” in new, where XX is the based-1
index of the other source in others. If they don’t have the attr attribute, an empty string is
sent to the string formatting. See notes.

• fmt – Other formatting data.

Returns
ds, but updated with the new version of attr, in each of the activated languages.

Notes

This is meant for constructing attributes by extending a previous version or combining it from different sources.
For example, given a ds that has long_name=”Variability”:

>>> update_attr(ds, "long_name", _("Mean of {attr}"))

Will update the “long_name” of ds with long_name=”Mean of Variability”. The use of _(. . . ) allows the de-
tection of this string by the translation manager. The function will be able to add a translatable version of the
string for each activated language, for example adding a long_name_fr=”Moyenne de Variabilité” (assuming a
long_name_fr was present on the initial ds).

If the new attribute is an aggregation from multiple sources, these can be passed in others.

2.11. xscen 171

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.unstack.html#xarray.Dataset.unstack
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray


xscen Documentation, Release 0.7.25-beta

>>> update_attr(
... ds0,
... "long_name",
... _("Addition of {attr} and {attr1}, divided by {attr2}"),
... others=[ds1, ds2],
... )

Here, ds0 will have it’s long_name updated with the passed string, where attr1 is the long_name of ds1 and attr2
the long_name of ds2. The process will be repeated for each localized long_name available on ds0. For example,
if ds0 has a long_name_fr, the template string is translated and filled with the long_name_fr attributes of ds0,
ds1 and ds2. If the latter don’t exist, the english version is used instead.

172 Chapter 2. Features



PYTHON MODULE INDEX

x
xscen, 127
xscen.aggregate, 129
xscen.biasadjust, 132
xscen.catalog, 134
xscen.catutils, 138
xscen.config, 141
xscen.diagnostics, 143
xscen.ensembles, 145
xscen.extract, 148
xscen.indicators, 153
xscen.io, 154
xscen.reduce, 159
xscen.regrid, 159
xscen.scripting, 161
xscen.spatial, 164
xscen.testing, 165
xscen.utils, 166
xscen.xclim_modules, 128
xscen.xclim_modules.conversions, 128

173



xscen Documentation, Release 0.7.25-beta

174 Python Module Index



INDEX

A
add_attr() (in module xscen.utils), 166
adjust() (in module xscen.biasadjust), 132
args_as_str() (in module xscen.config), 142

B
build_partition_data() (in module xs-

cen.ensembles), 145
build_path() (in module xscen.catutils), 138
build_reduction_data() (in module xscen.reduce),

159

C
change_units() (in module xscen.utils), 166
check_valid() (xscen.catalog.DataCatalog method),

134
clean_incomplete() (in module xscen.io), 154
clean_up() (in module xscen.utils), 166
climatological_mean() (in module xscen.aggregate),

129
climatological_op() (in module xscen.aggregate),

129
COLUMNS (in module xscen.catalog), 134
compute_deltas() (in module xscen.aggregate), 130
compute_indicators() (in module xscen.indicators),

153
concat_data_catalogs() (in module xscen.catalog),

137
create() (xscen.catalog.ProjectCatalog class method),

136
create_mask() (in module xscen.regrid), 159
creep_fill() (in module xscen.spatial), 164
creep_weights() (in module xscen.spatial), 164

D
datablock_3d() (in module xscen.testing), 165
DataCatalog (class in xscen.catalog), 134
date_parser() (in module xscen.utils), 167
drop_duplicates() (xscen.catalog.DataCatalog

method), 134
dtr() (in module xscen.xclim_modules.conversions), 128

E
ensemble_stats() (in module xscen.ensembles), 146
estimate_chunks() (in module xscen.io), 154
exists_in_cat() (xscen.catalog.DataCatalog

method), 134
extract_dataset() (in module xscen.extract), 148

F
fake_data() (in module xscen.testing), 165
from_df() (xscen.catalog.DataCatalog class method),

135

G
generate_id() (in module xscen.catalog), 138
generate_weights() (in module xscen.ensembles), 147
get_cat_attrs() (in module xscen.utils), 168
get_engine() (in module xscen.io), 154
get_warming_level() (in module xscen.extract), 149

H
health_checks() (in module xscen.diagnostics), 143

I
ID_COLUMNS (in module xscen.catalog), 136
iter_unique() (xscen.catalog.DataCatalog method),

135

L
load_config() (in module xscen.config), 142
load_xclim_module() (in module xscen.indicators),

153

M
make_toc() (in module xscen.io), 154
maybe_unstack() (in module xscen.utils), 168
measure_time (class in xscen.scripting), 161
measures_heatmap() (in module xscen.diagnostics),

143
measures_improvement() (in module xs-

cen.diagnostics), 144
minimum_calendar() (in module xscen.utils), 168

175



xscen Documentation, Release 0.7.25-beta

module
xscen, 127
xscen.aggregate, 129
xscen.biasadjust, 132
xscen.catalog, 134
xscen.catutils, 138
xscen.config, 141
xscen.diagnostics, 143
xscen.ensembles, 145
xscen.extract, 148
xscen.indicators, 153
xscen.io, 154
xscen.reduce, 159
xscen.regrid, 159
xscen.scripting, 161
xscen.spatial, 164
xscen.testing, 165
xscen.utils, 166
xscen.xclim_modules, 128
xscen.xclim_modules.conversions, 128

move_and_delete() (in module xscen.scripting), 161

N
natural_sort() (in module xscen.utils), 168

P
parse_config() (in module xscen.config), 142
parse_directory() (in module xscen.catutils), 139
parse_from_ds() (in module xscen.catutils), 140
precipitation() (in module xs-

cen.xclim_modules.conversions), 128
produce_horizon() (in module xscen.aggregate), 130
ProjectCatalog (class in xscen.catalog), 136
properties_and_measures() (in module xs-

cen.diagnostics), 144
publish_release_notes() (in module xscen.utils),

169

R
rechunk() (in module xscen.io), 155
rechunk_for_saving() (in module xscen.io), 155
recursive_update() (in module xscen.config), 142
reduce_ensemble() (in module xscen.reduce), 159
refresh() (xscen.catalog.ProjectCatalog method), 137
register_parse_type() (in module xscen.catutils),

141
regrid_dataset() (in module xscen.regrid), 160
resample() (in module xscen.extract), 150
round_bits() (in module xscen.io), 155

S
save_and_update() (in module xscen.scripting), 161
save_to_netcdf() (in module xscen.io), 156
save_to_table() (in module xscen.io), 156

save_to_zarr() (in module xscen.io), 157
search() (xscen.catalog.DataCatalog method), 135
search_data_catalogs() (in module xscen.extract),

151
send_mail() (in module xscen.scripting), 162
send_mail_on_exit() (in module xscen.scripting), 162
skippable() (in module xscen.scripting), 163
spatial_mean() (in module xscen.aggregate), 131
stack_drop_nans() (in module xscen.utils), 169
standardize_periods() (in module xscen.utils), 169
subset() (in module xscen.spatial), 164
subset_maxsize() (in module xscen.io), 158
subset_warming_level() (in module xscen.extract),

152

T
tasmax_from_dtr() (in module xs-

cen.xclim_modules.conversions), 128
tasmin_from_dtr() (in module xs-

cen.xclim_modules.conversions), 128
timeout() (in module xscen.scripting), 163
TimeoutException, 161
to_dataset() (xscen.catalog.DataCatalog method),

135
to_table() (in module xscen.io), 158
train() (in module xscen.biasadjust), 133
translate_time_chunk() (in module xscen.utils), 170

U
unique() (xscen.catalog.DataCatalog method), 136
unstack_dates() (in module xscen.utils), 170
unstack_fill_nan() (in module xscen.utils), 170
unstack_id() (in module xscen.catalog), 138
update() (xscen.catalog.ProjectCatalog method), 137
update_attr() (in module xscen.utils), 171
update_from_ds() (xscen.catalog.ProjectCatalog

method), 137

W
warning_on_one_line() (in module xscen), 127

X
xscen

module, 127
xscen.aggregate

module, 129
xscen.biasadjust

module, 132
xscen.catalog

module, 134
xscen.catutils

module, 138
xscen.config

module, 141

176 Index



xscen Documentation, Release 0.7.25-beta

xscen.diagnostics
module, 143

xscen.ensembles
module, 145

xscen.extract
module, 148

xscen.indicators
module, 153

xscen.io
module, 154

xscen.reduce
module, 159

xscen.regrid
module, 159

xscen.scripting
module, 161

xscen.spatial
module, 164

xscen.testing
module, 165

xscen.utils
module, 166

xscen.xclim_modules
module, 128

xscen.xclim_modules.conversions
module, 128

Index 177


	Need help?
	Features
	xscen
	Features
	Installation
	Acknowledgments

	Installation
	Official Sources
	Development Installation (Anaconda + pip)

	Good to know
	Which function to use when opening data
	Which function to use when resampling data
	Metadata translation
	Module-wide options
	Global warming dataset

	Examples
	Using and understanding Catalogs
	Basic Catalog Usage
	Basic .search() commands
	Advanced search: xs.search_data_catalogs
	Example 1: Multiple variables and frequencies + Historical and future
	Example 2: Restricting results
	Example 3: Search for data that can be computed from what’s available
	Derived variables


	Creating a New Catalog from a Directory
	Initialisation
	Appending new data to a ProjectCatalog
	Parsing a directory
	Unique Dataset ID
	Appending data using ProjectCatalog.update()
	More on patterns and advanced features
	Example 1 - wrong
	Example 2 - wrong again
	Example 3 - Correct!
	Example 4 - Filter on folder names
	Example 5 - Modifying metadata
	Example 6 : Even more complex field processing

	Restructuring catalogued files on disk
	Simple : template string and attributes
	Complete : build_path



	Getting Started
	Initialisation
	Searching a subset of datasets within DataCatalogs

	Extracting data
	Defining the region
	Preparing arguments for xarray
	Extraction function
	Saving files to disk
	Updating the catalog

	Simplifying the call to extract_dataset() with search_data_catalogs()

	Regridding data
	Preparing the destination grid
	Masking grid cells
	Preparing arguments for xESMF.Regridder
	Regridding function

	Bias adjusting data
	Preparing arguments for xclim.sdba
	Bias adjustment function

	Computing indicators
	Spatio-temporal aggregation
	Climatological operations
	Horizon coordinate and time dimension

	Computing deltas
	Spatial mean

	Ensemble statistics
	Weights
	Ensemble stats

	Clean up
	Calendars
	Attributes


	Diagnostics
	Health checks
	Properties and measures

	Ensembles
	Ensemble reduction
	Preparing the data
	Selecting a reduced ensemble

	Ensemble partition

	Warming levels
	Find warming levels with only the model name
	Find and extract data by warming levels
	Method #1: Subsetting datasets by warming level
	Vectorized subsetting

	Method #2: Producing horizons

	Deltas and spatial aggregation
	Ensemble statistics

	YAML usage
	Loading an existing YAML config file
	Building a YAML config file
	Generic arguments
	Function-specific parameters
	Managing paths
	Configuration of external packages

	Passing configuration through the command line


	Columns
	Workflow templates
	1 - Basic workflow with config
	2 - Compute indicators

	API
	Catalog
	Extraction
	Regridding
	Bias Adjustment
	Indicators
	Ensembles
	Aggregation
	Reduction
	Diagnostics and Quality Checks
	Input / Output
	Spatial tools
	Controlled Vocabulary and Mappings
	Configuration Utilities
	Special sections

	Script Utilities
	Packaging Utilities

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Translating xscen

	Pull Request Guidelines
	Tips
	Versioning/Tagging
	Packaging
	The simple approach


	Credits
	Development Lead
	Co-Developers
	Contributors

	Changelog
	v0.8.0 (unreleased)
	Announcements
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal changes

	v0.7.1 (2023-08-23)
	Internal changes

	v0.7.0 (2023-08-22)
	Announcements
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal changes

	v0.6.0 (2023-05-04)
	Announcements
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal changes

	v0.5.0 (2023-02-28)
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal changes

	v0.4.0 (2022-09-28)
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal changes

	v0.3.0 (2022-08-23)
	New features and enhancements
	Breaking changes
	Internal changes

	v0.2.0 (first official release)
	Announcements
	New features and enhancements
	Breaking changes
	Internal changes


	xscen
	xscen package
	Subpackages
	xscen.xclim_modules package
	Submodules
	xscen.xclim_modules.conversions module


	Submodules
	xscen.aggregate module
	xscen.biasadjust module
	xscen.catalog module
	xscen.catutils module
	xscen.config module
	Special sections

	xscen.diagnostics module
	xscen.ensembles module
	xscen.extract module
	xscen.indicators module
	xscen.io module
	xscen.reduce module
	xscen.regrid module
	xscen.scripting module
	xscen.spatial module
	xscen.testing module
	xscen.utils module



	Python Module Index
	Index

